SongEvo simulates the cultural evolution of quantitative traits of bird song. SongEvo is an individual- (agent-) based model. SongEvo is spatially-explicit and can be parameterized with, and tested against, measured song data. Functions are available for model implementation, sensitivity analyses, parameter optimization, model validation, and hypothesis testing.
SongEvo
implements the modelpar.sens
allows sensitivity analysespar.opt
allows parameter optimizationmod.val
allows model validationh.test
allows hypothesis testingSongEvo
implements the model par.sens
allows sensitivity analyses par.opt
allows parameter
optimization mod.val
allows model validation
h.test
allows hypothesis testing
To explore the SongEvo package, we will use a database of songs from Nuttall’s white-crowned sparrow (Zonotrichia leucophrys nuttalli) recorded at three locations in 1969 and 2005.
Examine global parameters. Global parameters describe our
understanding of the system and may be measured or hypothesized. They
are called “global” because they are used by many many functions and
subroutines within functions. For descriptions of all adjustable
parameters, see ?song.data
.
data("glo.parms")
glo.parms$mortality.a.m <- glo.parms$mortality.a.f <- glo.parms$mortality.a
glo.parms$mortality.j.m <- glo.parms$mortality.j.f <- glo.parms$mortality.j
glo.parms$male.fledge.n.mean <- glo.parms$male.fledge.n.mean*2
glo.parms$male.fledge.n.sd <- glo.parms$male.fledge.n.sd*2
glo.parms <- glo.parms[!names(glo.parms) %in% c("mortality.a","mortality.j")]
str(glo.parms)
#> List of 17
#> $ learning.error.d : num 0
#> $ learning.error.sd : num 430
#> $ n.territories : num 40
#> $ lifespan : num 2.08
#> $ phys.lim.min : num 1559
#> $ phys.lim.max : num 4364
#> $ male.fledge.n.mean: num 2.7
#> $ male.fledge.n.sd : num 1
#> $ disp.age : num 2
#> $ disp.distance.mean: num 110
#> $ disp.distance.sd : num 100
#> $ terr.turnover : num 0.5
#> $ male.fledge.n : num [1:40] 1 1 2 1 0 2 2 2 2 1 ...
#> $ mortality.a.f : num 0.468
#> $ mortality.a.m : num 0.468
#> $ mortality.j.f : num 0.5
#> $ mortality.j.m : num 0.5
Share global parameters with the global environment. We make these parameters available in the global environment so that we can access them with minimal code.
Data include the population name (Bear Valley, PRBO, or Schooner), year of song recording (1969 or 2005), and the frequency bandwidth of the trill.
SongEvo()
In this example, we use songs from individual birds recorded in one
population (PRBO) in the year 1969, which we will call
starting.trait
.
We want a starting population of 40 individuals, so we generate additional trait values to complement those from the existing 30 individuals. Then we create a data frame that includes a row for each individual; we add identification numbers, ages, and geographical coordinates for each individual.
starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait),
mean=mean(starting.trait), sd=sd(starting.trait)))
init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <- round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <- round(runif(n.territories, min=37.787768, max=37.805645), digits=8)
SongEvo()
includes several settings, which we specify
before running the model. For this example, we run the model for 10
iterations, over 36 years (i.e. 1969–2005). When conducting research
with SongEvo()
, users will want to increase the number
iterations (e.g. to 100 or 1000). Each timestep is one year in this
model (i.e. individuals complete all components of the model in 1 year).
We specify territory turnover rate here as an example of how to adjust
parameter values. We could adjust any other parameter value here also.
The learning method specifies that individuals integrate songs heard
from adults within the specified integration distance (intigrate.dist,
in kilometers). In this example, we do not includ a lifespan, so we
assign it NA. In this example, we do not model competition for mates, so
specify it as FALSE. Last, specify all as TRUE in order to save data for
every single simulated individual because we will use those data later
for mapping. If we do not need data for each individual, we set all to
FALSE because the all.inds data.frame becomes very large!
iteration <- 10
years <- 36
timestep <- 1
terr.turnover <- 0.5
integrate.dist <- 0.1
lifespan <- NA
mate.comp <- FALSE
prin <- FALSE
all <- TRUE
Now we call SongEvo with our specifications and save it in an object called SongEvo1.
SongEvo1 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,
timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover,
integrate.dist = integrate.dist,
learning.error.d = learning.error.d, learning.error.sd = learning.error.sd,
mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan,
phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max,
male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd,
mate.comp = mate.comp, prin = prin, all = TRUE)
The model required the following time to run on your computer:
Three main objects hold data regarding the SongEvo model. Additional objects are used temporarily within modules of the model.
First, currently alive individuals are stored in a data frame called “inds.” Values within “inds” are updated throughout each of the iterations of the model, and “inds” can be viewed after the model is completed.
head(SongEvo1$inds, min(5,nrow(SongEvo1$inds)))
#> coordinates id age trait x1 y1
#> M1482 (-122.4754, 37.7904) 1482 8 2090.363 -122.4754 37.79040
#> M1511 (-122.4868, 37.79245) 1511 8 3174.851 -122.4868 37.79245
#> M1535 (-122.4515, 37.79301) 1535 7 3341.994 -122.4515 37.79301
#> M1547 (-122.4768, 37.79017) 1547 7 2880.297 -122.4768 37.79017
#> M1597 (-122.4811, 37.7908) 1597 6 2999.243 -122.4811 37.79080
#> male.fledglings female.fledglings territory father sex fitness learn.dir
#> M1482 0 0 0 1200 M 1 0
#> M1511 0 0 0 1459 M 1 0
#> M1535 0 0 0 1399 M 1 0
#> M1547 0 0 0 1450 M 1 0
#> M1597 0 0 0 1452 M 1 0
#> x0 y0
#> M1482 -122.4775 37.79099
#> M1511 -122.4869 37.79170
#> M1535 -122.4524 37.79182
#> M1547 -122.4770 37.79012
#> M1597 -122.4786 37.79028
Second, an array (i.e. a multi-dimensional table) entitled “summary.results” includes population summary values for each time step (dimension 1) in each iteration (dimension 2) of the model. Population summary values are contained in five additional dimensions: population size for each time step of each iteration (“sample.n”), the population mean and variance of the song feature studied (“trait.pop.mean” and “trait.pop.variance”), with associated lower (“lci”) and upper (“uci”) confidence intervals.
dimnames(SongEvo1$summary.results)
#> $iteration
#> [1] "iteration 1" "iteration 2" "iteration 3" "iteration 4" "iteration 5"
#> [6] "iteration 6" "iteration 7" "iteration 8" "iteration 9" "iteration 10"
#>
#> $step
#> [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15"
#> [16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
#> [31] "31" "32" "33" "34" "35" "36"
#>
#> $feature
#> [1] "sample.n" "trait.pop.mean" "trait.pop.variance"
#> [4] "lci" "uci"
Third, individual values may optionally be concatenated and saved to one data frame entitled “all.inds.” all.inds can become quite large, and is therefore only recommended if additional data analyses are desired.
head(SongEvo1$all.inds, min(5,nrow(SongEvo1$all.inds)))
#> coordinates id age trait x1 y1 male.fledglings
#> I1.T1.1 (-122.4799, 37.79532) 1 2 4004.8 -122.4799 37.79532 1
#> I1.T1.2 (-122.4488, 37.79137) 2 2 3765.0 -122.4488 37.79137 1
#> I1.T1.3 (-122.4622, 37.7906) 3 2 3237.4 -122.4622 37.79060 2
#> I1.T1.4 (-122.4741, 37.80505) 4 2 3621.1 -122.4741 37.80505 0
#> I1.T1.5 (-122.4543, 37.79999) 5 2 3285.4 -122.4543 37.79999 0
#> female.fledglings territory father sex fitness learn.dir x0 y0 timestep
#> I1.T1.1 0 1 0 M 1 0 0 0 1
#> I1.T1.2 0 1 0 M 1 0 0 0 1
#> I1.T1.3 0 1 0 M 1 0 0 0 1
#> I1.T1.4 1 1 0 M 1 0 0 0 1
#> I1.T1.5 0 1 0 M 1 0 0 0 1
#> iteration
#> I1.T1.1 1
#> I1.T1.2 1
#> I1.T1.3 1
#> I1.T1.4 1
#> I1.T1.5 1
We see that the simulated population size remains relatively stable over the course of 36 years. This code uses the summary.results array.
plot(SongEvo1$summary.results[1, , "sample.n"], xlab="Year", ylab="Abundance", type="n",
xaxt="n", ylim=c(0, max(SongEvo1$summary.results[, , "sample.n"], na.rm=TRUE)))
axis(side=1, at=seq(0, 40, by=5), labels=seq(1970, 2010, by=5))
for(p in 1:iteration){
lines(SongEvo1$summary.results[p, , "sample.n"], col="light gray")
}
n.mean <- apply(SongEvo1$summary.results[, , "sample.n"], 2, mean, na.rm=TRUE)
lines(n.mean, col="red")
#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "sample.n"], MARGIN=2, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="red", lty=2)
lines(quant.means[2,], col="red", lty=2)
Load Hmisc package for plotting functions.
We see that the mean trait values per iteration varied widely, though mean trait values over all iterations remained relatively stable. This code uses the summary.results array.
plot(SongEvo1$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)",
xaxt="n", type="n", xlim=c(-0.5, 36),
ylim=c(min(SongEvo1$summary.results[, , "trait.pop.mean"], na.rm=TRUE),
max(SongEvo1$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
for(p in 1:iteration){
lines(SongEvo1$summary.results[p, , "trait.pop.mean"], col="light gray")
}
freq.mean <- apply(SongEvo1$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))#, tcl=-0.25, mgp=c(2,0.5,0))
#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile,
probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)
#plot mean and CI for historic songs.
#plot original song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
#text and arrows
text(x=5, y=2720, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)
We see that variance for each iteration per year increased in the first few years and then stabilized. This code uses the summary.results array.
#plot variance for each iteration per year
plot(SongEvo1$summary.results[1, , "trait.pop.variance"], xlab="Year",
ylab="Bandwidth Variance (Hz)", type="n", xaxt="n",
ylim=c(min(SongEvo1$summary.results[, , "trait.pop.variance"], na.rm=TRUE),
max(SongEvo1$summary.results[, , "trait.pop.variance"], na.rm=TRUE)))
axis(side=1, at=seq(0, 40, by=5), labels=seq(1970, 2010, by=5))
for(p in 1:iteration){
lines(SongEvo1$summary.results[p, , "trait.pop.variance"], col="light gray")
}
n.mean <- apply(SongEvo1$summary.results[, , "trait.pop.variance"], 2, mean, na.rm=TRUE)
lines(n.mean, col="green")
#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "trait.pop.variance"], MARGIN=2, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="green", lty=2)
lines(quant.means[2,], col="green", lty=2)
The simulation results include geographical coordinates and are in a standard spatial data format, thus allowing calculation of a wide variety of spatial statistics.
Load packages for making maps.
Convert data frame from long to wide format. This is necessary for making a multi-panel plot.
all.inds1 <- subset(SongEvo1$all.inds, SongEvo1$all.inds$iteration==1)
w <- dcast(as.data.frame(all.inds1), id ~ timestep, value.var="trait", fill=0)
all.inds1w <- merge(all.inds1, w, by="id")
years.SongEvo1 <- (dim(w)[2]-1 )
names(all.inds1w@data)[-(1:length(all.inds1@data))] <-paste("Ts", 1:(dim(w)[2]-1 ), sep="")
Create a function to generate a continuous color palette–we will use the palette in the next call to make color ramp to represent the trait value.
rbPal <- colorRampPalette(c('blue','red')) #Create a function to generate a continuous color palette
Plot maps, including a separate panel for each timestep (each of 36 years). Our example shows that individuals move across the landscape and that regional dialects evolve and move. The x-axis is longitude, the y-axis is latitude, and the color ramp indicates trill bandwidth in Hz.
spplot(all.inds1w[,-c(1:ncol(all.inds1))], as.table=TRUE,
cuts=c(0, seq(from=1500, to=4500, by=10)), ylab="",
col.regions=c("transparent", rbPal(1000)),
#cuts specifies that the first level (e.g. <1500) is transparent.
colorkey=list(
right=list(
fun=draw.colorkey,
args=list(
key=list(
at=seq(1500, 4500, 10),
col=rbPal(1000),
labels=list(
at=c(1500, 2000, 2500, 3000, 3500, 4000, 4500),
labels=c("1500", "2000", "2500", "3000", "3500", "4000", "4500")
)
)
)
)
)
)
In addition, you can plot simpler multi-panel maps that do not take advantage of the spatial data class.
#Lattice plot (not as a spatial frame)
it1 <- subset(SongEvo1$all.inds, iteration==1)
rbPal <- colorRampPalette(c('blue','red')) #Create a function to generate a continuous color palette
it1$Col <- rbPal(10)[as.numeric(cut(it1$trait, breaks = 10))]
xyplot(it1$y1~it1$x1 | it1$timestep, groups=it1$trait, asp="iso", col=it1$Col,
xlab="Longitude", ylab="Latitude")
par.sens()
This function allows testing the sensitivity of SongEvo to different parameter values.
par.sens()
Here we test the sensitivity of the Acquire a Territory submodel to variation in territory turnover rates, ranging from 0.8–1.2 times the published rate (40–60% of territories turned over). The call for the par.sens function has a format similar to SongEvo. The user specifies the parameter to test and the range of values for that parameter. The function currently allows examination of only one parameter at a time and requires at least two iterations.
Now we call the par.sens function with our specifications.
extra_parms <- list(init.inds = init.inds,
females = 1, # New in SongEvo v2
timestep = 1,
n.territories = nrow(init.inds),
integrate.dist = 0.1,
lifespan = NA,
terr.turnover = 0.5,
mate.comp = FALSE,
prin = FALSE,
all = TRUE,
# New in SongEvo v2
selectivity = 3,
content.bias = FALSE,
n.content.bias.loc = "all",
content.bias.loc = FALSE,
content.bias.loc.ranges = FALSE,
affected.traits = FALSE,
conformity.bias = FALSE,
prestige.bias=FALSE,
learn.m="default",
learn.f="default",
learning.error.d=0,
learning.error.sd=200)
global_parms_key <- which(!names(glo.parms) %in% names(extra_parms))
extra_parms[names(glo.parms[global_parms_key])]=glo.parms[global_parms_key]
par.sens1 <- par.sens(parm = parm, par.range = par.range,
iteration = iteration, steps = years, mate.comp = FALSE,
fixed_parms=extra_parms[names(extra_parms)!=parm], all = TRUE)
#> [1] "terr.turnover = 0.4"
#> [1] "terr.turnover = 0.425"
#> [1] "terr.turnover = 0.45"
#> [1] "terr.turnover = 0.475"
#> [1] "terr.turnover = 0.5"
#> [1] "terr.turnover = 0.525"
#> [1] "terr.turnover = 0.55"
#> [1] "terr.turnover = 0.575"
#> [1] "terr.turnover = 0.6"
Examine results objects, which include two arrays:
The first array, sens.results
, contains the SongEvo
model results for each parameter. It has the following dimensions:
dimnames(par.sens1$sens.results)
#> [[1]]
#> [1] "iteration 1" "iteration 2" "iteration 3" "iteration 4" "iteration 5"
#> [6] "iteration 6" "iteration 7" "iteration 8" "iteration 9" "iteration 10"
#>
#> [[2]]
#> [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15"
#> [16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
#> [31] "31" "32" "33" "34" "35" "36"
#>
#> [[3]]
#> [1] "sample.n" "trait.pop.mean" "trait.pop.variance"
#> [4] "lci" "uci"
#>
#> [[4]]
#> [1] "par.val 0.4" "par.val 0.425" "par.val 0.45" "par.val 0.475"
#> [5] "par.val 0.5" "par.val 0.525" "par.val 0.55" "par.val 0.575"
#> [9] "par.val 0.6"
The second array, sens.results.diff
contains the
quantile range of trait values across iterations within a parameter
value. It has the following dimensions:
dimnames(par.sens1$sens.results.diff)
#> [[1]]
#> [1] "par.val 0.4" "par.val 0.425" "par.val 0.45" "par.val 0.475"
#> [5] "par.val 0.5" "par.val 0.525" "par.val 0.55" "par.val 0.575"
#> [9] "par.val 0.6"
#>
#> [[2]]
#> [1] "Quantile diff 1" "Quantile diff 2" "Quantile diff 3" "Quantile diff 4"
#> [5] "Quantile diff 5" "Quantile diff 6" "Quantile diff 7" "Quantile diff 8"
#> [9] "Quantile diff 9" "Quantile diff 10" "Quantile diff 11" "Quantile diff 12"
#> [13] "Quantile diff 13" "Quantile diff 14" "Quantile diff 15" "Quantile diff 16"
#> [17] "Quantile diff 17" "Quantile diff 18" "Quantile diff 19" "Quantile diff 20"
#> [21] "Quantile diff 21" "Quantile diff 22" "Quantile diff 23" "Quantile diff 24"
#> [25] "Quantile diff 25" "Quantile diff 26" "Quantile diff 27" "Quantile diff 28"
#> [29] "Quantile diff 29" "Quantile diff 30" "Quantile diff 31" "Quantile diff 32"
#> [33] "Quantile diff 33" "Quantile diff 34" "Quantile diff 35" "Quantile diff 36"
To assess sensitivity of SongEvo to a range of parameter values, plot the range in trait quantiles per year by the parameter value. We see that territory turnover values of 0.4–0.6 provided means and quantile ranges of trill bandwidths that are similar to those obtained with the published estimate of 0.5, indicating that the Acquire a Territory submodel is robust to realistic variation in those parameter values.
In the figure, solid gray and black lines show the quantile range of song frequency per year over all iterations as parameterized with the published territory turnover rate (0.5; thick black line) and a range of values from 0.4 to 0.6 (in steps of 0.05, light to dark gray). Orange lines show the mean and 2.5th and 97.5th quantiles of all quantile ranges.
#plot of range in trait quantiles by year by parameter value
plot(1:years, par.sens1$sens.results.diff[1,], ylim=c(min(par.sens1$sens.results.diff,
na.rm=TRUE), max(par.sens1$sens.results.diff, na.rm=TRUE)), type="l",
ylab="Quantile range (Hz)", xlab="Year", col="transparent", xaxt="n")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))
#Make a continuous color ramp from gray to black
grbkPal <- colorRampPalette(c('gray','black'))
#Plot a line for each parameter value
for(i in 1:length(par.range)){
lines(1:years, par.sens1$sens.results.diff[i,], type="l",
col=grbkPal(length(par.range))[i])
}
#Plot values from published parameter values
lines(1:years, par.sens1$sens.results.diff[2,], type="l", col="black", lwd=4)
#Calculate and plot mean and quantiles
quant.mean <- apply(par.sens1$sens.results.diff, 2, mean, na.rm=TRUE)
lines(quant.mean, col="orange")
#Plot 95% quantiles (which are similar to credible intervals)
#95% quantiles of population means (narrower)
quant.means <- apply (par.sens1$sens.results.diff, MARGIN=2, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="orange", lty=2)
lines(quant.means[2,], col="orange", lty=2)
par.opt()
This function follows par.sens to help users optimize values for imperfectly known parameters for SongEvo. The goals are to maximize accuracy and precision of model prediction. Accuracy is quantified by three different approaches: i) the mean of absolute residuals of the predicted population mean values in relation to target data (e.g. observed or hypothetical values (smaller absolute residuals indicate a more accurate model)), ii) the difference between the bootstrapped mean of predicted population means and the mean of the target data, and iii) the proportion of simulated population trait means that fall within (i.e. are “contained by”) the confidence intervals of the target data (a higher proportion indicates greater accuracy). Precision is measured with the residuals of the predicted population variance to the variance of target data (smaller residuals indicate a more precise model).
par.opt()
Users specify the timestep (“ts”) at which to compare simulated trait
values to target trait data (“target.data”) and save the results in an
object (called par.opt1
here).
ts <- years
par.opt1 <- par.opt(sens.results=par.sens1$sens.results, ts=ts,
target.data=target.data, par.range=par.range)
Examine results objects (residuals and target match).
par.opt1$Residuals
#> , , Residuals of mean
#>
#> Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
#> par.val 0.4 337.67248 42.14224 618.3192 295.42507 296.43127
#> par.val 0.425 14.88322 64.83654 157.5851 220.03256 505.43352
#> par.val 0.45 98.19680 426.78861 130.5791 37.26350 91.81459
#> par.val 0.475 480.51629 151.77558 329.3065 172.13522 173.00116
#> par.val 0.5 38.88184 235.34810 174.1565 476.72616 371.41632
#> par.val 0.525 246.14716 85.87224 33.6524 176.26693 438.59028
#> par.val 0.55 205.79261 171.11830 386.3405 305.85898 350.03035
#> par.val 0.575 166.16689 237.88605 123.9382 12.36809 32.29153
#> par.val 0.6 324.83059 240.07137 211.8161 233.80812 262.50084
#> Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10
#> par.val 0.4 136.33191 434.04084 363.43588 337.6249 103.5518
#> par.val 0.425 401.41800 190.58312 365.07502 105.6916 259.4278
#> par.val 0.45 94.77140 394.94548 237.53560 393.6234 130.3846
#> par.val 0.475 184.07631 411.56752 205.27598 284.1895 279.7190
#> par.val 0.5 71.92619 61.22911 89.23354 257.2702 288.6791
#> par.val 0.525 107.86898 246.29488 514.83296 150.7413 348.6759
#> par.val 0.55 105.74324 282.10859 286.41502 105.3514 230.7253
#> par.val 0.575 353.74372 332.41011 316.94364 134.5768 204.4446
#> par.val 0.6 523.07773 265.56457 242.19849 309.3421 471.0858
#>
#> , , Residuals of variance
#>
#> Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
#> par.val 0.4 15713.1977 13839.242 11639.100 2908.3894 21015.808
#> par.val 0.425 12241.3845 13840.693 10582.837 7101.4268 1225.971
#> par.val 0.45 10123.3088 5596.804 20580.338 3074.3697 11074.651
#> par.val 0.475 3697.0456 16446.050 1924.619 572.1751 2866.875
#> par.val 0.5 746.2376 19626.442 6360.826 16660.5471 241.952
#> par.val 0.525 20974.3797 23365.129 3747.057 18754.1502 11432.909
#> par.val 0.55 7211.3114 9319.934 12130.865 10441.0221 18145.817
#> par.val 0.575 15631.7062 18728.480 8317.070 10932.7747 7733.102
#> par.val 0.6 1187.0508 12701.042 2140.042 11966.6007 4146.222
#> Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10
#> par.val 0.4 12436.211 20752.072 4328.3979 14323.847 3715.786
#> par.val 0.425 24174.412 25259.289 5496.4018 5140.107 4913.227
#> par.val 0.45 21283.045 9472.799 231.4417 8591.068 6376.929
#> par.val 0.475 17411.252 5637.427 14698.5215 5431.506 6768.395
#> par.val 0.5 3234.145 20065.146 19035.1251 5962.384 10092.814
#> par.val 0.525 21616.796 12381.724 13612.8361 12271.126 2340.125
#> par.val 0.55 2492.179 13210.131 102.5839 12249.199 26210.343
#> par.val 0.575 8169.606 4321.632 1697.6651 7776.691 19964.172
#> par.val 0.6 1881.575 6018.208 2966.9014 7593.890 8458.041
par.opt1$Target.match
#> Difference in means Proportion contained
#> par.val 0.4 296.4976 0.1
#> par.val 0.425 228.4967 0.2
#> par.val 0.45 165.5880 0.1
#> par.val 0.475 267.1563 0.0
#> par.val 0.5 198.7103 0.3
#> par.val 0.525 228.1638 0.2
#> par.val 0.55 242.9484 0.0
#> par.val 0.575 189.0033 0.2
#> par.val 0.6 308.4296 0.0
par.opt()
par.opt()
plot(par.range, par.opt1$Target.match[,1], type="l", xlab="Parameter range",
ylab="Difference in means (Hz)")
plot(par.range, par.opt1$Prop.contained, type="l", xlab="Parameter range",
ylab="Proportion contained")
res.mean.means <- apply(par.opt1$Residuals[, , 1], MARGIN=1, mean, na.rm=TRUE)
res.mean.quants <- apply (par.opt1$Residuals[, , 1], MARGIN=1, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
plot(par.range, res.mean.means, col="orange", ylim=c(min(par.opt1$Residuals[,,1],
na.rm=TRUE), max(par.opt1$Residuals[,,1], na.rm=TRUE)), type="b",
xlab="Parameter value (territory turnover rate)",
ylab="Residual of trait mean (trill bandwidth, Hz)")
points(par.range, res.mean.quants[1,], col="orange")
points(par.range, res.mean.quants[2,], col="orange")
lines(par.range, res.mean.quants[1,], col="orange", lty=2)
lines(par.range, res.mean.quants[2,], col="orange", lty=2)
par.opt()
#Calculate and plot mean and quantiles of residuals of variance of trait values
res.var.mean <- apply(par.opt1$Residuals[, , 2], MARGIN=1, mean, na.rm=TRUE)
res.var.quants <- apply (par.opt1$Residuals[, , 2], MARGIN=1, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
plot(par.range, res.var.mean, col="purple",
ylim=c(min(par.opt1$Residuals[,,2], na.rm=TRUE),
max(par.opt1$Residuals[,,2], na.rm=TRUE)), type="b",
xlab="Parameter value (territory turnover rate)",
ylab="Residual of trait variance (trill bandwidth, Hz)")
points(par.range, res.var.quants[1,], col="purple")
points(par.range, res.var.quants[2,], col="purple")
lines(par.range, res.var.quants[1,], col="purple", lty=2)
lines(par.range, res.var.quants[2,], col="purple", lty=2)
par.opt()
: plot trait values for range of parameterspar(mfcol=c(3,2),
mar=c(2.1, 2.1, 0.1, 0.1),
cex=0.8)
for(i in 1:length(par.range)){
plot(par.sens1$sens.results[ , , "trait.pop.mean", ], xlab="Year", ylab="Bandwidth (Hz)",
xaxt="n", type="n", xlim=c(-0.5, years),
ylim=c(min(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE),
max(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE)))
for(p in 1:iteration){
lines(par.sens1$sens.results[p, , "trait.pop.mean", i], col="light gray")
}
freq.mean <- apply(par.sens1$sens.results[, , "trait.pop.mean", i], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))
#Plot 95% quantiles
quant.means <- apply (par.sens1$sens.results[, , "trait.pop.mean", i], MARGIN=2, quantile,
probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)
#plot mean and CI for historic songs.
#plot original song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
#plot current song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)
#plot panel title
text(x=3, y=max(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE)-100,
labels=paste("Par = ", par.range[i], sep=""))
}
mod.val()
This function allows users to assess the validity of the specified
model by testing model performance with a population different from the
population used to build the model. The user first runs SongEvo with
initial trait values from the validation population.
mod.val()
uses the summary.results array from SongEvo,
along with target values from a specified timestep, to calculate the
same three measures of accuracy and one measure of precision that are
calculated in par.opt.
We parameterized SongEvo with initial song data from Schooner Bay, CA in 1969, and then compared simulated data to target (i.e. observed) data in 2005.
Prepare initial song data for Schooner Bay.
starting.trait <- subset(song.data, Population=="Schooner" & Year==1969)$Trill.FBW
starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait),
mean=mean(starting.trait), sd=sd(starting.trait)))
init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <- round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <- round(runif(n.territories, min=37.787768, max=37.805645), digits=8)
Specify and call SongEvo() with validation data
iteration <- 10
years <- 36
timestep <- 1
terr.turnover <- 0.5
SongEvo2 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,
timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover,
integrate.dist = integrate.dist,
learning.error.d = learning.error.d, learning.error.sd = learning.error.sd,
mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan,
phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max,
male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd,
mate.comp = mate.comp, prin = prin, all = TRUE)
Specify and call mod.val()
ts <- 36
target.data <- subset(song.data, Population=="Schooner" & Year==2005)$Trill.FBW
mod.val1 <- mod.val(summary.results=SongEvo2$summary.results, ts=ts,
target.data=target.data)
Plot results from mod.val()
plot(SongEvo2$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)",
xaxt="n", type="n", xlim=c(-0.5, 36.5),
ylim=c(min(SongEvo2$summary.results[, , "trait.pop.mean"], na.rm=TRUE),
max(SongEvo2$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
for(p in 1:iteration){
lines(SongEvo2$summary.results[p, , "trait.pop.mean"], col="light gray")
}
freq.mean <- apply(SongEvo2$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))
#Plot 95% quantiles
quant.means <- apply (SongEvo2$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile,
probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)
#plot mean and CI for historic songs.
#plot original song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
#text and arrows
text(x=5, y=2720, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)
#plot current song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)
#text and arrows
text(x=25, y=3100, labels="Current songs", pos=3)
arrows(x0=25, y0=3300, x1=36, y1=mean(target.data), length=0.1)
The model did reasonably well predicting trait evolution in the
validation population, suggesting that it is valid for our purposes: the
mean bandwidth was abs(mean(target.data)-freq.mean)
Hz from
the observed values, ~21% of predicted population means fell within the
95% confidence intervals of the observed data, and residuals of means
(~545 Hz) and variances (~415181 Hz) were similar to those produced by
the training data set.
h.test()
This function allows hypothesis testing with SongEvo. To test if measured songs from two time points evolved through mechanisms described in the model (e.g. drift or selection), users initialize the model with historical data, parameterize the model based on their understanding of the mechanisms, and test if subsequently observed or predicted data match the simulated data. The output data list includes two measures of accuracy: the proportion of observed points that fall within the confidence intervals of the simulated data and the residuals between simulated and observed population trait means. Precision is measured as the residuals between simulated and observed population trait variances. We tested the hypothesis that songs of Z. l. nuttalli in Bear Valley, CA evolved through cultural drift from 1969 to 2005.
Prepare initial song data for Bear Valley.
starting.trait <- subset(song.data, Population=="Bear Valley" & Year==1969)$Trill.FBW
starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait),
mean=mean(starting.trait), sd=sd(starting.trait)))
init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <- round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <- round(runif(n.territories, min=37.787768, max=37.805645), digits=8)
Specify and call SongEvo() with test data
SongEvo3 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,
timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover,
integrate.dist = integrate.dist,
learning.error.d = learning.error.d, learning.error.sd = learning.error.sd,
mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan,
phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max,
male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd,
mate.comp = mate.comp, prin = prin, all = TRUE)
Specify and call h.test()
target.data <- subset(song.data, Population=="Bear Valley" & Year==2005)$Trill.FBW
h.test1 <- h.test(summary.results=SongEvo3$summary.results, ts=ts,
target.data=target.data)
The output data list includes two measures of accuracy: the proportion of observed points that fall within the confidence intervals of the simulated data and the residuals between simulated and observed population trait means. Precision is measured as the residuals between simulated and observed population trait variances.
Eighty percent of the observed data fell within the central 95% of the simulated values, providing support for the hypothesis that cultural drift as described in this model is sufficient to describe the evolution of trill frequency bandwidth in this population.
h.test1
#> $Residuals
#> Residuals of mean Residuals of variance
#> Iteration 1 236.5796 133441.628
#> Iteration 2 94.7541 19757.392
#> Iteration 3 284.1701 13530.493
#> Iteration 4 157.2309 7559.532
#> Iteration 5 940.7100 59896.916
#> Iteration 6 295.9355 20705.733
#> Iteration 7 107.0326 35204.140
#> Iteration 8 358.8188 64719.731
#> Iteration 9 109.4810 8627.788
#> Iteration 10 465.8790 57366.316
#>
#> $Prop.contained
#> [1] 0.4
We can plot simulated data in relation to measured data.
#Plot
plot(SongEvo3$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)",
xaxt="n", type="n", xlim=c(-0.5, 35.5),
ylim=c(min(SongEvo3$summary.results[, , "trait.pop.mean"], na.rm=TRUE),
max(SongEvo3$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
for(p in 1:iteration){
lines(SongEvo3$summary.results[p, , "trait.pop.mean"], col="light gray")
}
freq.mean <- apply(SongEvo3$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))#, tcl=-0.25, mgp=c(2,0.5,0))
#Plot 95% quantiles (which are similar to credible intervals)
quant.means <- apply (SongEvo3$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile,
probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)
#plot original song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
#plot current song values
points(rep(ts, length(target.data)), target.data)
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)
#text and arrows
text(x=11, y=2850, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)
text(x=25, y=2900, labels="Current songs", pos=1)
arrows(x0=25, y0=2920, x1=years, y1=mean(target.data), length=0.1)