SongEvo simulates the cultural evolution of quantitative traits of bird song. SongEvo is an individual- (agent-) based model. SongEvo is spatially-explicit and can be parameterized with, and tested against, measured song data. Functions are available for model implementation, sensitivity analyses, parameter optimization, model validation, and hypothesis testing.
SongEvo
implements the modelpar.sens
allows sensitivity analysespar.opt
allows parameter optimizationmod.val
allows model validationh.test
allows hypothesis testingSongEvo
implements the model par.sens
allows sensitivity analyses par.opt
allows parameter
optimization mod.val
allows model validation
h.test
allows hypothesis testing
To explore the SongEvo package, we will use a database of songs from Nuttall’s white-crowned sparrow (Zonotrichia leucophrys nuttalli) recorded at three locations in 1969 and 2005.
Examine global parameters. Global parameters describe our
understanding of the system and may be measured or hypothesized. They
are called “global” because they are used by many many functions and
subroutines within functions. For descriptions of all adjustable
parameters, see ?song.data
.
data("glo.parms")
glo.parms$mortality.a.m <- glo.parms$mortality.a.f <- glo.parms$mortality.a
glo.parms$mortality.j.m <- glo.parms$mortality.j.f <- glo.parms$mortality.j
glo.parms$male.fledge.n.mean <- glo.parms$male.fledge.n.mean*2
glo.parms$male.fledge.n.sd <- glo.parms$male.fledge.n.sd*2
glo.parms <- glo.parms[!names(glo.parms) %in% c("mortality.a","mortality.j")]
str(glo.parms)
#> List of 17
#> $ learning.error.d : num 0
#> $ learning.error.sd : num 430
#> $ n.territories : num 40
#> $ lifespan : num 2.08
#> $ phys.lim.min : num 1559
#> $ phys.lim.max : num 4364
#> $ male.fledge.n.mean: num 2.7
#> $ male.fledge.n.sd : num 1
#> $ disp.age : num 2
#> $ disp.distance.mean: num 110
#> $ disp.distance.sd : num 100
#> $ terr.turnover : num 0.5
#> $ male.fledge.n : num [1:40] 1 1 2 1 0 2 2 2 2 1 ...
#> $ mortality.a.f : num 0.468
#> $ mortality.a.m : num 0.468
#> $ mortality.j.f : num 0.5
#> $ mortality.j.m : num 0.5
Share global parameters with the global environment. We make these parameters available in the global environment so that we can access them with minimal code.
Data include the population name (Bear Valley, PRBO, or Schooner), year of song recording (1969 or 2005), and the frequency bandwidth of the trill.
SongEvo()
In this example, we use songs from individual birds recorded in one
population (PRBO) in the year 1969, which we will call
starting.trait
.
We want a starting population of 40 individuals, so we generate additional trait values to complement those from the existing 30 individuals. Then we create a data frame that includes a row for each individual; we add identification numbers, ages, and geographical coordinates for each individual.
starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait),
mean=mean(starting.trait), sd=sd(starting.trait)))
init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <- round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <- round(runif(n.territories, min=37.787768, max=37.805645), digits=8)
SongEvo()
includes several settings, which we specify
before running the model. For this example, we run the model for 10
iterations, over 36 years (i.e. 1969–2005). When conducting research
with SongEvo()
, users will want to increase the number
iterations (e.g. to 100 or 1000). Each timestep is one year in this
model (i.e. individuals complete all components of the model in 1 year).
We specify territory turnover rate here as an example of how to adjust
parameter values. We could adjust any other parameter value here also.
The learning method specifies that individuals integrate songs heard
from adults within the specified integration distance (intigrate.dist,
in kilometers). In this example, we do not includ a lifespan, so we
assign it NA. In this example, we do not model competition for mates, so
specify it as FALSE. Last, specify all as TRUE in order to save data for
every single simulated individual because we will use those data later
for mapping. If we do not need data for each individual, we set all to
FALSE because the all.inds data.frame becomes very large!
iteration <- 10
years <- 36
timestep <- 1
terr.turnover <- 0.5
integrate.dist <- 0.1
lifespan <- NA
mate.comp <- FALSE
prin <- FALSE
all <- TRUE
Now we call SongEvo with our specifications and save it in an object called SongEvo1.
SongEvo1 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,
timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover,
integrate.dist = integrate.dist,
learning.error.d = learning.error.d, learning.error.sd = learning.error.sd,
mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan,
phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max,
male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd,
mate.comp = mate.comp, prin = prin, all = TRUE)
The model required the following time to run on your computer:
Three main objects hold data regarding the SongEvo model. Additional objects are used temporarily within modules of the model.
First, currently alive individuals are stored in a data frame called “inds.” Values within “inds” are updated throughout each of the iterations of the model, and “inds” can be viewed after the model is completed.
head(SongEvo1$inds, min(5,nrow(SongEvo1$inds)))
#> coordinates id age trait x1 y1
#> M1486 (-122.4821, 37.79661) 1486 9 3918.732 -122.4821 37.79661
#> M1613 (-122.4474, 37.78458) 1613 7 4016.982 -122.4474 37.78458
#> M1639 (-122.4475, 37.79344) 1639 6 3387.764 -122.4475 37.79344
#> M1677 (-122.4518, 37.78993) 1677 5 3302.352 -122.4518 37.78993
#> M1693 (-122.4475, 37.78623) 1693 5 3770.248 -122.4475 37.78623
#> male.fledglings female.fledglings territory father sex fitness learn.dir
#> M1486 0 0 0 1382 M 1 0
#> M1613 0 2 1 1554 M 1 0
#> M1639 1 0 1 1529 M 1 0
#> M1677 3 1 1 1497 M 1 0
#> M1693 2 1 1 1613 M 1 0
#> x0 y0
#> M1486 -122.4823 37.79714
#> M1613 -122.4450 37.78416
#> M1639 -122.4470 37.79114
#> M1677 -122.4521 37.78766
#> M1693 -122.4474 37.78458
Second, an array (i.e. a multi-dimensional table) entitled “summary.results” includes population summary values for each time step (dimension 1) in each iteration (dimension 2) of the model. Population summary values are contained in five additional dimensions: population size for each time step of each iteration (“sample.n”), the population mean and variance of the song feature studied (“trait.pop.mean” and “trait.pop.variance”), with associated lower (“lci”) and upper (“uci”) confidence intervals.
dimnames(SongEvo1$summary.results)
#> $iteration
#> [1] "iteration 1" "iteration 2" "iteration 3" "iteration 4" "iteration 5"
#> [6] "iteration 6" "iteration 7" "iteration 8" "iteration 9" "iteration 10"
#>
#> $step
#> [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15"
#> [16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
#> [31] "31" "32" "33" "34" "35" "36"
#>
#> $feature
#> [1] "sample.n" "trait.pop.mean" "trait.pop.variance"
#> [4] "lci" "uci"
Third, individual values may optionally be concatenated and saved to one data frame entitled “all.inds.” all.inds can become quite large, and is therefore only recommended if additional data analyses are desired.
head(SongEvo1$all.inds, min(5,nrow(SongEvo1$all.inds)))
#> coordinates id age trait x1 y1 male.fledglings
#> I1.T1.1 (-122.4527, 37.79753) 1 2 4004.8 -122.4527 37.79753 1
#> I1.T1.2 (-122.4696, 37.80365) 2 2 3765.0 -122.4696 37.80365 0
#> I1.T1.3 (-122.4645, 37.80187) 3 2 3237.4 -122.4645 37.80187 2
#> I1.T1.4 (-122.4657, 37.79992) 4 2 3621.1 -122.4657 37.79992 0
#> I1.T1.5 (-122.4563, 37.80313) 5 2 3285.4 -122.4563 37.80313 0
#> female.fledglings territory father sex fitness learn.dir x0 y0 timestep
#> I1.T1.1 0 1 0 M 1 0 0 0 1
#> I1.T1.2 1 1 0 M 1 0 0 0 1
#> I1.T1.3 0 1 0 M 1 0 0 0 1
#> I1.T1.4 1 1 0 M 1 0 0 0 1
#> I1.T1.5 0 1 0 M 1 0 0 0 1
#> iteration
#> I1.T1.1 1
#> I1.T1.2 1
#> I1.T1.3 1
#> I1.T1.4 1
#> I1.T1.5 1
We see that the simulated population size remains relatively stable over the course of 36 years. This code uses the summary.results array.
plot(SongEvo1$summary.results[1, , "sample.n"], xlab="Year", ylab="Abundance", type="n",
xaxt="n", ylim=c(0, max(SongEvo1$summary.results[, , "sample.n"], na.rm=TRUE)))
axis(side=1, at=seq(0, 40, by=5), labels=seq(1970, 2010, by=5))
for(p in 1:iteration){
lines(SongEvo1$summary.results[p, , "sample.n"], col="light gray")
}
n.mean <- apply(SongEvo1$summary.results[, , "sample.n"], 2, mean, na.rm=TRUE)
lines(n.mean, col="red")
#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "sample.n"], MARGIN=2, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="red", lty=2)
lines(quant.means[2,], col="red", lty=2)
Load Hmisc package for plotting functions.
We see that the mean trait values per iteration varied widely, though mean trait values over all iterations remained relatively stable. This code uses the summary.results array.
plot(SongEvo1$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)",
xaxt="n", type="n", xlim=c(-0.5, 36),
ylim=c(min(SongEvo1$summary.results[, , "trait.pop.mean"], na.rm=TRUE),
max(SongEvo1$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
for(p in 1:iteration){
lines(SongEvo1$summary.results[p, , "trait.pop.mean"], col="light gray")
}
freq.mean <- apply(SongEvo1$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))#, tcl=-0.25, mgp=c(2,0.5,0))
#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile,
probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)
#plot mean and CI for historic songs.
#plot original song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
#text and arrows
text(x=5, y=2720, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)
We see that variance for each iteration per year increased in the first few years and then stabilized. This code uses the summary.results array.
#plot variance for each iteration per year
plot(SongEvo1$summary.results[1, , "trait.pop.variance"], xlab="Year",
ylab="Bandwidth Variance (Hz)", type="n", xaxt="n",
ylim=c(min(SongEvo1$summary.results[, , "trait.pop.variance"], na.rm=TRUE),
max(SongEvo1$summary.results[, , "trait.pop.variance"], na.rm=TRUE)))
axis(side=1, at=seq(0, 40, by=5), labels=seq(1970, 2010, by=5))
for(p in 1:iteration){
lines(SongEvo1$summary.results[p, , "trait.pop.variance"], col="light gray")
}
n.mean <- apply(SongEvo1$summary.results[, , "trait.pop.variance"], 2, mean, na.rm=TRUE)
lines(n.mean, col="green")
#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "trait.pop.variance"], MARGIN=2, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="green", lty=2)
lines(quant.means[2,], col="green", lty=2)
The simulation results include geographical coordinates and are in a standard spatial data format, thus allowing calculation of a wide variety of spatial statistics.
Load packages for making maps.
Convert data frame from long to wide format. This is necessary for making a multi-panel plot.
all.inds1 <- subset(SongEvo1$all.inds, SongEvo1$all.inds$iteration==1)
w <- dcast(as.data.frame(all.inds1), id ~ timestep, value.var="trait", fill=0)
all.inds1w <- merge(all.inds1, w, by="id")
years.SongEvo1 <- (dim(w)[2]-1 )
names(all.inds1w@data)[-(1:length(all.inds1@data))] <-paste("Ts", 1:(dim(w)[2]-1 ), sep="")
Create a function to generate a continuous color palette–we will use the palette in the next call to make color ramp to represent the trait value.
rbPal <- colorRampPalette(c('blue','red')) #Create a function to generate a continuous color palette
Plot maps, including a separate panel for each timestep (each of 36 years). Our example shows that individuals move across the landscape and that regional dialects evolve and move. The x-axis is longitude, the y-axis is latitude, and the color ramp indicates trill bandwidth in Hz.
spplot(all.inds1w[,-c(1:ncol(all.inds1))], as.table=TRUE,
cuts=c(0, seq(from=1500, to=4500, by=10)), ylab="",
col.regions=c("transparent", rbPal(1000)),
#cuts specifies that the first level (e.g. <1500) is transparent.
colorkey=list(
right=list(
fun=draw.colorkey,
args=list(
key=list(
at=seq(1500, 4500, 10),
col=rbPal(1000),
labels=list(
at=c(1500, 2000, 2500, 3000, 3500, 4000, 4500),
labels=c("1500", "2000", "2500", "3000", "3500", "4000", "4500")
)
)
)
)
)
)
In addition, you can plot simpler multi-panel maps that do not take advantage of the spatial data class.
#Lattice plot (not as a spatial frame)
it1 <- subset(SongEvo1$all.inds, iteration==1)
rbPal <- colorRampPalette(c('blue','red')) #Create a function to generate a continuous color palette
it1$Col <- rbPal(10)[as.numeric(cut(it1$trait, breaks = 10))]
xyplot(it1$y1~it1$x1 | it1$timestep, groups=it1$trait, asp="iso", col=it1$Col,
xlab="Longitude", ylab="Latitude")
par.sens()
This function allows testing the sensitivity of SongEvo to different parameter values.
par.sens()
Here we test the sensitivity of the Acquire a Territory submodel to variation in territory turnover rates, ranging from 0.8–1.2 times the published rate (40–60% of territories turned over). The call for the par.sens function has a format similar to SongEvo. The user specifies the parameter to test and the range of values for that parameter. The function currently allows examination of only one parameter at a time and requires at least two iterations.
Now we call the par.sens function with our specifications.
extra_parms <- list(init.inds = init.inds,
females = 1, # New in SongEvo v2
timestep = 1,
n.territories = nrow(init.inds),
integrate.dist = 0.1,
lifespan = NA,
terr.turnover = 0.5,
mate.comp = FALSE,
prin = FALSE,
all = TRUE,
# New in SongEvo v2
selectivity = 3,
content.bias = FALSE,
n.content.bias.loc = "all",
content.bias.loc = FALSE,
content.bias.loc.ranges = FALSE,
affected.traits = FALSE,
conformity.bias = FALSE,
prestige.bias=FALSE,
learn.m="default",
learn.f="default",
learning.error.d=0,
learning.error.sd=200)
global_parms_key <- which(!names(glo.parms) %in% names(extra_parms))
extra_parms[names(glo.parms[global_parms_key])]=glo.parms[global_parms_key]
par.sens1 <- par.sens(parm = parm, par.range = par.range,
iteration = iteration, steps = years, mate.comp = FALSE,
fixed_parms=extra_parms[names(extra_parms)!=parm], all = TRUE)
#> [1] "terr.turnover = 0.4"
#> [1] "terr.turnover = 0.425"
#> [1] "terr.turnover = 0.45"
#> [1] "terr.turnover = 0.475"
#> [1] "terr.turnover = 0.5"
#> [1] "terr.turnover = 0.525"
#> [1] "terr.turnover = 0.55"
#> [1] "terr.turnover = 0.575"
#> [1] "terr.turnover = 0.6"
Examine results objects, which include two arrays:
The first array, sens.results
, contains the SongEvo
model results for each parameter. It has the following dimensions:
dimnames(par.sens1$sens.results)
#> [[1]]
#> [1] "iteration 1" "iteration 2" "iteration 3" "iteration 4" "iteration 5"
#> [6] "iteration 6" "iteration 7" "iteration 8" "iteration 9" "iteration 10"
#>
#> [[2]]
#> [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15"
#> [16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
#> [31] "31" "32" "33" "34" "35" "36"
#>
#> [[3]]
#> [1] "sample.n" "trait.pop.mean" "trait.pop.variance"
#> [4] "lci" "uci"
#>
#> [[4]]
#> [1] "par.val 0.4" "par.val 0.425" "par.val 0.45" "par.val 0.475"
#> [5] "par.val 0.5" "par.val 0.525" "par.val 0.55" "par.val 0.575"
#> [9] "par.val 0.6"
The second array, sens.results.diff
contains the
quantile range of trait values across iterations within a parameter
value. It has the following dimensions:
dimnames(par.sens1$sens.results.diff)
#> [[1]]
#> [1] "par.val 0.4" "par.val 0.425" "par.val 0.45" "par.val 0.475"
#> [5] "par.val 0.5" "par.val 0.525" "par.val 0.55" "par.val 0.575"
#> [9] "par.val 0.6"
#>
#> [[2]]
#> [1] "Quantile diff 1" "Quantile diff 2" "Quantile diff 3" "Quantile diff 4"
#> [5] "Quantile diff 5" "Quantile diff 6" "Quantile diff 7" "Quantile diff 8"
#> [9] "Quantile diff 9" "Quantile diff 10" "Quantile diff 11" "Quantile diff 12"
#> [13] "Quantile diff 13" "Quantile diff 14" "Quantile diff 15" "Quantile diff 16"
#> [17] "Quantile diff 17" "Quantile diff 18" "Quantile diff 19" "Quantile diff 20"
#> [21] "Quantile diff 21" "Quantile diff 22" "Quantile diff 23" "Quantile diff 24"
#> [25] "Quantile diff 25" "Quantile diff 26" "Quantile diff 27" "Quantile diff 28"
#> [29] "Quantile diff 29" "Quantile diff 30" "Quantile diff 31" "Quantile diff 32"
#> [33] "Quantile diff 33" "Quantile diff 34" "Quantile diff 35" "Quantile diff 36"
To assess sensitivity of SongEvo to a range of parameter values, plot the range in trait quantiles per year by the parameter value. We see that territory turnover values of 0.4–0.6 provided means and quantile ranges of trill bandwidths that are similar to those obtained with the published estimate of 0.5, indicating that the Acquire a Territory submodel is robust to realistic variation in those parameter values.
In the figure, solid gray and black lines show the quantile range of song frequency per year over all iterations as parameterized with the published territory turnover rate (0.5; thick black line) and a range of values from 0.4 to 0.6 (in steps of 0.05, light to dark gray). Orange lines show the mean and 2.5th and 97.5th quantiles of all quantile ranges.
#plot of range in trait quantiles by year by parameter value
plot(1:years, par.sens1$sens.results.diff[1,], ylim=c(min(par.sens1$sens.results.diff,
na.rm=TRUE), max(par.sens1$sens.results.diff, na.rm=TRUE)), type="l",
ylab="Quantile range (Hz)", xlab="Year", col="transparent", xaxt="n")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))
#Make a continuous color ramp from gray to black
grbkPal <- colorRampPalette(c('gray','black'))
#Plot a line for each parameter value
for(i in 1:length(par.range)){
lines(1:years, par.sens1$sens.results.diff[i,], type="l",
col=grbkPal(length(par.range))[i])
}
#Plot values from published parameter values
lines(1:years, par.sens1$sens.results.diff[2,], type="l", col="black", lwd=4)
#Calculate and plot mean and quantiles
quant.mean <- apply(par.sens1$sens.results.diff, 2, mean, na.rm=TRUE)
lines(quant.mean, col="orange")
#Plot 95% quantiles (which are similar to credible intervals)
#95% quantiles of population means (narrower)
quant.means <- apply (par.sens1$sens.results.diff, MARGIN=2, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="orange", lty=2)
lines(quant.means[2,], col="orange", lty=2)
par.opt()
This function follows par.sens to help users optimize values for imperfectly known parameters for SongEvo. The goals are to maximize accuracy and precision of model prediction. Accuracy is quantified by three different approaches: i) the mean of absolute residuals of the predicted population mean values in relation to target data (e.g. observed or hypothetical values (smaller absolute residuals indicate a more accurate model)), ii) the difference between the bootstrapped mean of predicted population means and the mean of the target data, and iii) the proportion of simulated population trait means that fall within (i.e. are “contained by”) the confidence intervals of the target data (a higher proportion indicates greater accuracy). Precision is measured with the residuals of the predicted population variance to the variance of target data (smaller residuals indicate a more precise model).
par.opt()
Users specify the timestep (“ts”) at which to compare simulated trait
values to target trait data (“target.data”) and save the results in an
object (called par.opt1
here).
ts <- years
par.opt1 <- par.opt(sens.results=par.sens1$sens.results, ts=ts,
target.data=target.data, par.range=par.range)
Examine results objects (residuals and target match).
par.opt1$Residuals
#> , , Residuals of mean
#>
#> Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
#> par.val 0.4 453.20696 210.5718 38.30995 387.26257 214.83503
#> par.val 0.425 404.11677 296.2240 24.49342 168.21570 320.40834
#> par.val 0.45 147.45605 290.0803 88.69663 143.36319 80.40223
#> par.val 0.475 364.68102 458.4019 356.53383 353.57721 269.28765
#> par.val 0.5 513.06852 382.7395 272.92341 542.49408 394.60764
#> par.val 0.525 255.44487 319.2044 159.95935 12.18715 76.50453
#> par.val 0.55 125.85641 113.3259 104.58264 513.44847 213.80175
#> par.val 0.575 134.84595 247.1981 260.74852 393.73616 317.21055
#> par.val 0.6 97.81721 220.8136 49.83505 185.85297 378.95534
#> Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10
#> par.val 0.4 152.53329 81.463192 179.8530 259.98503 214.259042
#> par.val 0.425 135.43414 55.138329 382.3488 178.82267 8.712625
#> par.val 0.45 37.86277 214.719311 246.8748 297.11292 425.027935
#> par.val 0.475 188.10521 200.398304 262.9516 119.03927 292.365726
#> par.val 0.5 278.18802 358.891099 274.5445 274.53009 319.697206
#> par.val 0.525 52.99814 315.575097 284.8793 516.82147 196.123701
#> par.val 0.55 103.31236 4.342637 174.7679 257.66204 106.946743
#> par.val 0.575 58.94127 201.050800 199.3146 165.76322 382.787158
#> par.val 0.6 47.61089 298.283980 241.1544 63.89332 341.796072
#>
#> , , Residuals of variance
#>
#> Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
#> par.val 0.4 16792.884481 1884.864 8722.404 5985.0687 2739.6575
#> par.val 0.425 14192.474880 7081.036 8933.155 423.2947 36098.3753
#> par.val 0.45 1505.416114 3481.659 1948.791 887.0233 13413.6386
#> par.val 0.475 5495.864732 4224.342 10239.350 12163.4202 3807.3220
#> par.val 0.5 2.510399 14386.743 10385.058 8866.7226 659.8065
#> par.val 0.525 19604.466754 2860.051 32899.684 11455.7680 10369.0950
#> par.val 0.55 15602.317878 28189.588 7493.059 20445.8492 8095.5097
#> par.val 0.575 30087.037904 6185.274 4019.957 18330.7369 22080.2050
#> par.val 0.6 13099.781083 1205.803 2403.983 586.8759 8989.4549
#> Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10
#> par.val 0.4 9946.4036 75.78961 8111.5718 16730.1362 3014.202
#> par.val 0.425 15878.8533 15484.65958 6162.1862 3560.0691 8738.654
#> par.val 0.45 6018.6199 4484.63359 7733.0092 8376.6651 14438.161
#> par.val 0.475 3429.4314 8105.08259 9469.1177 8067.4533 2150.253
#> par.val 0.5 9806.6145 3154.10655 225.8658 719.5565 10433.947
#> par.val 0.525 5476.8707 1148.48587 3154.9403 19197.7098 14558.573
#> par.val 0.55 2664.4439 3724.74759 12757.7776 16349.6057 10105.054
#> par.val 0.575 342.4285 1455.93137 1589.3142 2998.6052 6894.774
#> par.val 0.6 7775.0169 16501.64413 12453.7697 2226.1921 2362.857
par.opt1$Target.match
#> Difference in means Proportion contained
#> par.val 0.4 219.2280 0.2
#> par.val 0.425 156.7283 0.3
#> par.val 0.45 189.5871 0.2
#> par.val 0.475 286.5342 0.0
#> par.val 0.5 361.1684 0.0
#> par.val 0.525 218.9698 0.3
#> par.val 0.55 151.1422 0.1
#> par.val 0.575 209.1904 0.1
#> par.val 0.6 192.6013 0.3
par.opt()
par.opt()
plot(par.range, par.opt1$Target.match[,1], type="l", xlab="Parameter range",
ylab="Difference in means (Hz)")
plot(par.range, par.opt1$Prop.contained, type="l", xlab="Parameter range",
ylab="Proportion contained")
res.mean.means <- apply(par.opt1$Residuals[, , 1], MARGIN=1, mean, na.rm=TRUE)
res.mean.quants <- apply (par.opt1$Residuals[, , 1], MARGIN=1, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
plot(par.range, res.mean.means, col="orange", ylim=c(min(par.opt1$Residuals[,,1],
na.rm=TRUE), max(par.opt1$Residuals[,,1], na.rm=TRUE)), type="b",
xlab="Parameter value (territory turnover rate)",
ylab="Residual of trait mean (trill bandwidth, Hz)")
points(par.range, res.mean.quants[1,], col="orange")
points(par.range, res.mean.quants[2,], col="orange")
lines(par.range, res.mean.quants[1,], col="orange", lty=2)
lines(par.range, res.mean.quants[2,], col="orange", lty=2)
par.opt()
#Calculate and plot mean and quantiles of residuals of variance of trait values
res.var.mean <- apply(par.opt1$Residuals[, , 2], MARGIN=1, mean, na.rm=TRUE)
res.var.quants <- apply (par.opt1$Residuals[, , 2], MARGIN=1, quantile,
probs=c(0.975, 0.025), R=600, na.rm=TRUE)
plot(par.range, res.var.mean, col="purple",
ylim=c(min(par.opt1$Residuals[,,2], na.rm=TRUE),
max(par.opt1$Residuals[,,2], na.rm=TRUE)), type="b",
xlab="Parameter value (territory turnover rate)",
ylab="Residual of trait variance (trill bandwidth, Hz)")
points(par.range, res.var.quants[1,], col="purple")
points(par.range, res.var.quants[2,], col="purple")
lines(par.range, res.var.quants[1,], col="purple", lty=2)
lines(par.range, res.var.quants[2,], col="purple", lty=2)
par.opt()
: plot trait values for range of parameterspar(mfcol=c(3,2),
mar=c(2.1, 2.1, 0.1, 0.1),
cex=0.8)
for(i in 1:length(par.range)){
plot(par.sens1$sens.results[ , , "trait.pop.mean", ], xlab="Year", ylab="Bandwidth (Hz)",
xaxt="n", type="n", xlim=c(-0.5, years),
ylim=c(min(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE),
max(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE)))
for(p in 1:iteration){
lines(par.sens1$sens.results[p, , "trait.pop.mean", i], col="light gray")
}
freq.mean <- apply(par.sens1$sens.results[, , "trait.pop.mean", i], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))
#Plot 95% quantiles
quant.means <- apply (par.sens1$sens.results[, , "trait.pop.mean", i], MARGIN=2, quantile,
probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)
#plot mean and CI for historic songs.
#plot original song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
#plot current song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)
#plot panel title
text(x=3, y=max(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE)-100,
labels=paste("Par = ", par.range[i], sep=""))
}
mod.val()
This function allows users to assess the validity of the specified
model by testing model performance with a population different from the
population used to build the model. The user first runs SongEvo with
initial trait values from the validation population.
mod.val()
uses the summary.results array from SongEvo,
along with target values from a specified timestep, to calculate the
same three measures of accuracy and one measure of precision that are
calculated in par.opt.
We parameterized SongEvo with initial song data from Schooner Bay, CA in 1969, and then compared simulated data to target (i.e. observed) data in 2005.
Prepare initial song data for Schooner Bay.
starting.trait <- subset(song.data, Population=="Schooner" & Year==1969)$Trill.FBW
starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait),
mean=mean(starting.trait), sd=sd(starting.trait)))
init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <- round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <- round(runif(n.territories, min=37.787768, max=37.805645), digits=8)
Specify and call SongEvo() with validation data
iteration <- 10
years <- 36
timestep <- 1
terr.turnover <- 0.5
SongEvo2 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,
timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover,
integrate.dist = integrate.dist,
learning.error.d = learning.error.d, learning.error.sd = learning.error.sd,
mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan,
phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max,
male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd,
mate.comp = mate.comp, prin = prin, all = TRUE)
Specify and call mod.val()
ts <- 36
target.data <- subset(song.data, Population=="Schooner" & Year==2005)$Trill.FBW
mod.val1 <- mod.val(summary.results=SongEvo2$summary.results, ts=ts,
target.data=target.data)
Plot results from mod.val()
plot(SongEvo2$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)",
xaxt="n", type="n", xlim=c(-0.5, 36.5),
ylim=c(min(SongEvo2$summary.results[, , "trait.pop.mean"], na.rm=TRUE),
max(SongEvo2$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
for(p in 1:iteration){
lines(SongEvo2$summary.results[p, , "trait.pop.mean"], col="light gray")
}
freq.mean <- apply(SongEvo2$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))
#Plot 95% quantiles
quant.means <- apply (SongEvo2$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile,
probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)
#plot mean and CI for historic songs.
#plot original song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
#text and arrows
text(x=5, y=2720, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)
#plot current song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)
#text and arrows
text(x=25, y=3100, labels="Current songs", pos=3)
arrows(x0=25, y0=3300, x1=36, y1=mean(target.data), length=0.1)
The model did reasonably well predicting trait evolution in the
validation population, suggesting that it is valid for our purposes: the
mean bandwidth was abs(mean(target.data)-freq.mean)
Hz from
the observed values, ~21% of predicted population means fell within the
95% confidence intervals of the observed data, and residuals of means
(~545 Hz) and variances (~415181 Hz) were similar to those produced by
the training data set.
h.test()
This function allows hypothesis testing with SongEvo. To test if measured songs from two time points evolved through mechanisms described in the model (e.g. drift or selection), users initialize the model with historical data, parameterize the model based on their understanding of the mechanisms, and test if subsequently observed or predicted data match the simulated data. The output data list includes two measures of accuracy: the proportion of observed points that fall within the confidence intervals of the simulated data and the residuals between simulated and observed population trait means. Precision is measured as the residuals between simulated and observed population trait variances. We tested the hypothesis that songs of Z. l. nuttalli in Bear Valley, CA evolved through cultural drift from 1969 to 2005.
Prepare initial song data for Bear Valley.
starting.trait <- subset(song.data, Population=="Bear Valley" & Year==1969)$Trill.FBW
starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait),
mean=mean(starting.trait), sd=sd(starting.trait)))
init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <- round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <- round(runif(n.territories, min=37.787768, max=37.805645), digits=8)
Specify and call SongEvo() with test data
SongEvo3 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,
timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover,
integrate.dist = integrate.dist,
learning.error.d = learning.error.d, learning.error.sd = learning.error.sd,
mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan,
phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max,
male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd,
mate.comp = mate.comp, prin = prin, all = TRUE)
Specify and call h.test()
target.data <- subset(song.data, Population=="Bear Valley" & Year==2005)$Trill.FBW
h.test1 <- h.test(summary.results=SongEvo3$summary.results, ts=ts,
target.data=target.data)
The output data list includes two measures of accuracy: the proportion of observed points that fall within the confidence intervals of the simulated data and the residuals between simulated and observed population trait means. Precision is measured as the residuals between simulated and observed population trait variances.
Eighty percent of the observed data fell within the central 95% of the simulated values, providing support for the hypothesis that cultural drift as described in this model is sufficient to describe the evolution of trill frequency bandwidth in this population.
h.test1
#> $Residuals
#> Residuals of mean Residuals of variance
#> Iteration 1 565.7413 36213.01
#> Iteration 2 628.1452 25130.94
#> Iteration 3 327.2808 66605.72
#> Iteration 4 487.8161 53752.93
#> Iteration 5 206.3127 61757.68
#> Iteration 6 556.2683 62287.18
#> Iteration 7 600.0208 70528.58
#> Iteration 8 512.9494 52141.48
#> Iteration 9 403.4288 18740.65
#> Iteration 10 276.5118 51540.67
#>
#> $Prop.contained
#> [1] 0.4
We can plot simulated data in relation to measured data.
#Plot
plot(SongEvo3$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)",
xaxt="n", type="n", xlim=c(-0.5, 35.5),
ylim=c(min(SongEvo3$summary.results[, , "trait.pop.mean"], na.rm=TRUE),
max(SongEvo3$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
for(p in 1:iteration){
lines(SongEvo3$summary.results[p, , "trait.pop.mean"], col="light gray")
}
freq.mean <- apply(SongEvo3$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))#, tcl=-0.25, mgp=c(2,0.5,0))
#Plot 95% quantiles (which are similar to credible intervals)
quant.means <- apply (SongEvo3$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile,
probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)
#plot original song values
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
#plot current song values
points(rep(ts, length(target.data)), target.data)
library("boot")
sample.mean <- function(d, x) {
mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)#, strata=mn.res$iteration)
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)
#text and arrows
text(x=11, y=2850, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)
text(x=25, y=2900, labels="Current songs", pos=1)
arrows(x0=25, y0=2920, x1=years, y1=mean(target.data), length=0.1)