‘SongEvo’ package

Introduction

SongEvo simulates the cultural evolution of quantitative traits of bird song. SongEvo is an individual- (agent-) based model. SongEvo is spatially-explicit and can be parameterized with, and tested against, measured song data. Functions are available for model implementation, sensitivity analyses, parameter optimization, model validation, and hypothesis testing.

Overview of Functions

  1. SongEvo implements the model
  2. par.sens allows sensitivity analyses
  3. par.opt allows parameter optimization
  4. mod.val allows model validation
  5. h.test allows hypothesis testing

Getting Started

Load and attach SongEvo package

library(SongEvo)

Functions

SongEvo implements the model par.sens allows sensitivity analyses par.opt allows parameter optimization mod.val allows model validation h.test allows hypothesis testing

Examples

EXAMPLE 1

Load the example data: song.data and global parameters

To explore the SongEvo package, we will use a database of songs from Nuttall’s white-crowned sparrow (Zonotrichia leucophrys nuttalli) recorded at three locations in 1969 and 2005.

data("song.data")

Examine global parameters. Global parameters describe our understanding of the system and may be measured or hypothesized. They are called “global” because they are used by many many functions and subroutines within functions. For descriptions of all adjustable parameters, see ?song.data.

data("glo.parms")
glo.parms$mortality.a.m <- glo.parms$mortality.a.f <- glo.parms$mortality.a
glo.parms$mortality.j.m <- glo.parms$mortality.j.f <- glo.parms$mortality.j
glo.parms$male.fledge.n.mean <- glo.parms$male.fledge.n.mean*2
glo.parms$male.fledge.n.sd <- glo.parms$male.fledge.n.sd*2
glo.parms <- glo.parms[!names(glo.parms) %in% c("mortality.a","mortality.j")]
str(glo.parms)
#> List of 17
#>  $ learning.error.d  : num 0
#>  $ learning.error.sd : num 430
#>  $ n.territories     : num 40
#>  $ lifespan          : num 2.08
#>  $ phys.lim.min      : num 1559
#>  $ phys.lim.max      : num 4364
#>  $ male.fledge.n.mean: num 2.7
#>  $ male.fledge.n.sd  : num 1
#>  $ disp.age          : num 2
#>  $ disp.distance.mean: num 110
#>  $ disp.distance.sd  : num 100
#>  $ terr.turnover     : num 0.5
#>  $ male.fledge.n     : num [1:40] 1 1 2 1 0 2 2 2 2 1 ...
#>  $ mortality.a.f     : num 0.468
#>  $ mortality.a.m     : num 0.468
#>  $ mortality.j.f     : num 0.5
#>  $ mortality.j.m     : num 0.5

Share global parameters with the global environment. We make these parameters available in the global environment so that we can access them with minimal code.

list2env(glo.parms, globalenv())
#> <environment: R_GlobalEnv>

Examine song data

Data include the population name (Bear Valley, PRBO, or Schooner), year of song recording (1969 or 2005), and the frequency bandwidth of the trill.

str(song.data)
#> 'data.frame':    89 obs. of  3 variables:
#>  $ Population: Factor w/ 3 levels "Bear Valley",..: 3 3 3 3 3 3 3 3 3 3 ...
#>  $ Year      : int  1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 ...
#>  $ Trill.FBW : num  3261 2494 2806 2878 2758 ...

Simulate bird song evolution with SongEvo()

Define initial individuals

In this example, we use songs from individual birds recorded in one population (PRBO) in the year 1969, which we will call starting.trait.

starting.trait <- subset(song.data, Population=="PRBO" & Year==1969)$Trill.FBW

We want a starting population of 40 individuals, so we generate additional trait values to complement those from the existing 30 individuals. Then we create a data frame that includes a row for each individual; we add identification numbers, ages, and geographical coordinates for each individual.

starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait), 
    mean=mean(starting.trait), sd=sd(starting.trait)))
init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <-  round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <-  round(runif(n.territories, min=37.787768, max=37.805645), digits=8)

Specify and call the SongEvo model

SongEvo() includes several settings, which we specify before running the model. For this example, we run the model for 10 iterations, over 36 years (i.e. 1969–2005). When conducting research with SongEvo(), users will want to increase the number iterations (e.g. to 100 or 1000). Each timestep is one year in this model (i.e. individuals complete all components of the model in 1 year). We specify territory turnover rate here as an example of how to adjust parameter values. We could adjust any other parameter value here also. The learning method specifies that individuals integrate songs heard from adults within the specified integration distance (intigrate.dist, in kilometers). In this example, we do not includ a lifespan, so we assign it NA. In this example, we do not model competition for mates, so specify it as FALSE. Last, specify all as TRUE in order to save data for every single simulated individual because we will use those data later for mapping. If we do not need data for each individual, we set all to FALSE because the all.inds data.frame becomes very large!

iteration <- 10
years <- 36
timestep <- 1
terr.turnover <- 0.5
integrate.dist <- 0.1
lifespan <- NA
mate.comp <- FALSE
prin <- FALSE
all <- TRUE

Now we call SongEvo with our specifications and save it in an object called SongEvo1.

SongEvo1 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,  
    timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover, 
    integrate.dist = integrate.dist, 
    learning.error.d = learning.error.d, learning.error.sd = learning.error.sd, 
    mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
    mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan, 
    phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max, 
    male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
    disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd, 
    mate.comp = mate.comp, prin = prin, all = TRUE)

Examine results from SongEvo model

The model required the following time to run on your computer:

SongEvo1$time
#>    user  system elapsed 
#>  22.372   0.035  22.409

Three main objects hold data regarding the SongEvo model. Additional objects are used temporarily within modules of the model.

First, currently alive individuals are stored in a data frame called “inds.” Values within “inds” are updated throughout each of the iterations of the model, and “inds” can be viewed after the model is completed.

head(SongEvo1$inds, min(5,nrow(SongEvo1$inds)))
#>                 coordinates   id age    trait        x1       y1
#> M1486 (-122.4821, 37.79661) 1486   9 3918.732 -122.4821 37.79661
#> M1613 (-122.4474, 37.78458) 1613   7 4016.982 -122.4474 37.78458
#> M1639 (-122.4475, 37.79344) 1639   6 3387.764 -122.4475 37.79344
#> M1677 (-122.4518, 37.78993) 1677   5 3302.352 -122.4518 37.78993
#> M1693 (-122.4475, 37.78623) 1693   5 3770.248 -122.4475 37.78623
#>       male.fledglings female.fledglings territory father sex fitness learn.dir
#> M1486               0                 0         0   1382   M       1         0
#> M1613               0                 2         1   1554   M       1         0
#> M1639               1                 0         1   1529   M       1         0
#> M1677               3                 1         1   1497   M       1         0
#> M1693               2                 1         1   1613   M       1         0
#>              x0       y0
#> M1486 -122.4823 37.79714
#> M1613 -122.4450 37.78416
#> M1639 -122.4470 37.79114
#> M1677 -122.4521 37.78766
#> M1693 -122.4474 37.78458

Second, an array (i.e. a multi-dimensional table) entitled “summary.results” includes population summary values for each time step (dimension 1) in each iteration (dimension 2) of the model. Population summary values are contained in five additional dimensions: population size for each time step of each iteration (“sample.n”), the population mean and variance of the song feature studied (“trait.pop.mean” and “trait.pop.variance”), with associated lower (“lci”) and upper (“uci”) confidence intervals.

dimnames(SongEvo1$summary.results)
#> $iteration
#>  [1] "iteration 1"  "iteration 2"  "iteration 3"  "iteration 4"  "iteration 5" 
#>  [6] "iteration 6"  "iteration 7"  "iteration 8"  "iteration 9"  "iteration 10"
#> 
#> $step
#>  [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12" "13" "14" "15"
#> [16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
#> [31] "31" "32" "33" "34" "35" "36"
#> 
#> $feature
#> [1] "sample.n"           "trait.pop.mean"     "trait.pop.variance"
#> [4] "lci"                "uci"

Third, individual values may optionally be concatenated and saved to one data frame entitled “all.inds.” all.inds can become quite large, and is therefore only recommended if additional data analyses are desired.

head(SongEvo1$all.inds,  min(5,nrow(SongEvo1$all.inds)))
#>                   coordinates id age  trait        x1       y1 male.fledglings
#> I1.T1.1 (-122.4527, 37.79753)  1   2 4004.8 -122.4527 37.79753               1
#> I1.T1.2 (-122.4696, 37.80365)  2   2 3765.0 -122.4696 37.80365               0
#> I1.T1.3 (-122.4645, 37.80187)  3   2 3237.4 -122.4645 37.80187               2
#> I1.T1.4 (-122.4657, 37.79992)  4   2 3621.1 -122.4657 37.79992               0
#> I1.T1.5 (-122.4563, 37.80313)  5   2 3285.4 -122.4563 37.80313               0
#>         female.fledglings territory father sex fitness learn.dir x0 y0 timestep
#> I1.T1.1                 0         1      0   M       1         0  0  0        1
#> I1.T1.2                 1         1      0   M       1         0  0  0        1
#> I1.T1.3                 0         1      0   M       1         0  0  0        1
#> I1.T1.4                 1         1      0   M       1         0  0  0        1
#> I1.T1.5                 0         1      0   M       1         0  0  0        1
#>         iteration
#> I1.T1.1         1
#> I1.T1.2         1
#> I1.T1.3         1
#> I1.T1.4         1
#> I1.T1.5         1

Simulated population size

We see that the simulated population size remains relatively stable over the course of 36 years. This code uses the summary.results array.

plot(SongEvo1$summary.results[1, , "sample.n"], xlab="Year", ylab="Abundance", type="n", 
    xaxt="n", ylim=c(0, max(SongEvo1$summary.results[, , "sample.n"], na.rm=TRUE)))
axis(side=1, at=seq(0, 40, by=5), labels=seq(1970, 2010, by=5))
    for(p in 1:iteration){
        lines(SongEvo1$summary.results[p, , "sample.n"], col="light gray")
        }
n.mean <- apply(SongEvo1$summary.results[, , "sample.n"], 2, mean, na.rm=TRUE)
lines(n.mean, col="red")

#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "sample.n"], MARGIN=2, quantile, 
    probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="red", lty=2)
lines(quant.means[2,], col="red", lty=2)

Load Hmisc package for plotting functions.

library("Hmisc")

Simulated trait values

We see that the mean trait values per iteration varied widely, though mean trait values over all iterations remained relatively stable. This code uses the summary.results array.

plot(SongEvo1$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)", 
    xaxt="n", type="n", xlim=c(-0.5, 36), 
    ylim=c(min(SongEvo1$summary.results[, , "trait.pop.mean"], na.rm=TRUE), 
    max(SongEvo1$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
    for(p in 1:iteration){
        lines(SongEvo1$summary.results[p, , "trait.pop.mean"], col="light gray")
        }
freq.mean <- apply(SongEvo1$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))#, tcl=-0.25, mgp=c(2,0.5,0))

#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile, 
    probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)

#plot mean and CI for historic songs.  
 #plot original song values
library("boot")
sample.mean <- function(d, x) {
    mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)  
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
 #text and arrows
text(x=5, y=2720, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)

Trait variance

We see that variance for each iteration per year increased in the first few years and then stabilized. This code uses the summary.results array.

 #plot variance for each iteration per year
plot(SongEvo1$summary.results[1, , "trait.pop.variance"], xlab="Year", 
    ylab="Bandwidth Variance (Hz)", type="n", xaxt="n", 
    ylim=c(min(SongEvo1$summary.results[, , "trait.pop.variance"], na.rm=TRUE), 
    max(SongEvo1$summary.results[, , "trait.pop.variance"], na.rm=TRUE)))
axis(side=1, at=seq(0, 40, by=5), labels=seq(1970, 2010, by=5))
    for(p in 1:iteration){
        lines(SongEvo1$summary.results[p, , "trait.pop.variance"], col="light gray")
        }
n.mean <- apply(SongEvo1$summary.results[, , "trait.pop.variance"], 2, mean, na.rm=TRUE)
lines(n.mean, col="green")

#Plot 95% quantiles
quant.means <- apply (SongEvo1$summary.results[, , "trait.pop.variance"], MARGIN=2, quantile, 
    probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="green", lty=2)
lines(quant.means[2,], col="green", lty=2)

Maps

The simulation results include geographical coordinates and are in a standard spatial data format, thus allowing calculation of a wide variety of spatial statistics.

Load packages for making maps.

library("sp")
library("reshape2")
library("lattice")

Convert data frame from long to wide format. This is necessary for making a multi-panel plot.

all.inds1 <- subset(SongEvo1$all.inds, SongEvo1$all.inds$iteration==1)
w <- dcast(as.data.frame(all.inds1), id ~ timestep, value.var="trait", fill=0)
all.inds1w <- merge(all.inds1, w, by="id")
years.SongEvo1 <- (dim(w)[2]-1 )
names(all.inds1w@data)[-(1:length(all.inds1@data))] <-paste("Ts", 1:(dim(w)[2]-1 ), sep="")

Create a function to generate a continuous color palette–we will use the palette in the next call to make color ramp to represent the trait value.

rbPal <- colorRampPalette(c('blue','red')) #Create a function to generate a continuous color palette

Plot maps, including a separate panel for each timestep (each of 36 years). Our example shows that individuals move across the landscape and that regional dialects evolve and move. The x-axis is longitude, the y-axis is latitude, and the color ramp indicates trill bandwidth in Hz.

spplot(all.inds1w[,-c(1:ncol(all.inds1))], as.table=TRUE, 
    cuts=c(0, seq(from=1500, to=4500, by=10)), ylab="", 
    col.regions=c("transparent", rbPal(1000)), 
    #cuts specifies that the first level (e.g. <1500) is transparent.
colorkey=list(
    right=list(
          fun=draw.colorkey,
          args=list( 
                key=list(
                at=seq(1500, 4500, 10),
                col=rbPal(1000),
                labels=list(
                at=c(1500, 2000, 2500, 3000, 3500, 4000, 4500),
                labels=c("1500", "2000", "2500", "3000", "3500", "4000", "4500")
                )
                )
                )
            )
    )
)

In addition, you can plot simpler multi-panel maps that do not take advantage of the spatial data class.

 #Lattice plot (not as a spatial frame)
it1 <- subset(SongEvo1$all.inds, iteration==1)
rbPal <- colorRampPalette(c('blue','red')) #Create a function to generate a continuous color palette
it1$Col <- rbPal(10)[as.numeric(cut(it1$trait, breaks = 10))]
xyplot(it1$y1~it1$x1 | it1$timestep, groups=it1$trait, asp="iso", col=it1$Col, 
    xlab="Longitude", ylab="Latitude")

Test model sensitivity with par.sens()

This function allows testing the sensitivity of SongEvo to different parameter values.

Specify and call par.sens()

Here we test the sensitivity of the Acquire a Territory submodel to variation in territory turnover rates, ranging from 0.8–1.2 times the published rate (40–60% of territories turned over). The call for the par.sens function has a format similar to SongEvo. The user specifies the parameter to test and the range of values for that parameter. The function currently allows examination of only one parameter at a time and requires at least two iterations.

parm <- "terr.turnover"
par.range = seq(from=0.4, to=0.6, by=0.025)
sens.results <- NULL

Now we call the par.sens function with our specifications.

extra_parms <- list(init.inds = init.inds, 
                    females = 1,  # New in SongEvo v2
                    timestep = 1, 
                    n.territories = nrow(init.inds),
                    integrate.dist = 0.1,
                    lifespan = NA, 
                    terr.turnover = 0.5, 
                    mate.comp = FALSE, 
                    prin = FALSE,
                    all = TRUE,
                    # New in SongEvo v2
                    selectivity = 3,
                    content.bias = FALSE,
                    n.content.bias.loc = "all",
                    content.bias.loc = FALSE,
                    content.bias.loc.ranges = FALSE,
                    affected.traits = FALSE,
                    conformity.bias = FALSE,
                    prestige.bias=FALSE,
                    learn.m="default",
                    learn.f="default",
                    learning.error.d=0,
                    learning.error.sd=200)
global_parms_key <- which(!names(glo.parms) %in% names(extra_parms))
extra_parms[names(glo.parms[global_parms_key])]=glo.parms[global_parms_key]
par.sens1 <- par.sens(parm = parm, par.range = par.range, 
                      iteration = iteration, steps = years, mate.comp = FALSE, 
                      fixed_parms=extra_parms[names(extra_parms)!=parm], all = TRUE)
#> [1] "terr.turnover =  0.4"
#> [1] "terr.turnover =  0.425"
#> [1] "terr.turnover =  0.45"
#> [1] "terr.turnover =  0.475"
#> [1] "terr.turnover =  0.5"
#> [1] "terr.turnover =  0.525"
#> [1] "terr.turnover =  0.55"
#> [1] "terr.turnover =  0.575"
#> [1] "terr.turnover =  0.6"

Examine par.sens results

Examine results objects, which include two arrays:

The first array, sens.results, contains the SongEvo model results for each parameter. It has the following dimensions:

dimnames(par.sens1$sens.results)
#> [[1]]
#>  [1] "iteration 1"  "iteration 2"  "iteration 3"  "iteration 4"  "iteration 5" 
#>  [6] "iteration 6"  "iteration 7"  "iteration 8"  "iteration 9"  "iteration 10"
#> 
#> [[2]]
#>  [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12" "13" "14" "15"
#> [16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
#> [31] "31" "32" "33" "34" "35" "36"
#> 
#> [[3]]
#> [1] "sample.n"           "trait.pop.mean"     "trait.pop.variance"
#> [4] "lci"                "uci"               
#> 
#> [[4]]
#> [1] "par.val 0.4"   "par.val 0.425" "par.val 0.45"  "par.val 0.475"
#> [5] "par.val 0.5"   "par.val 0.525" "par.val 0.55"  "par.val 0.575"
#> [9] "par.val 0.6"

The second array, sens.results.diff contains the quantile range of trait values across iterations within a parameter value. It has the following dimensions:

dimnames(par.sens1$sens.results.diff)
#> [[1]]
#> [1] "par.val 0.4"   "par.val 0.425" "par.val 0.45"  "par.val 0.475"
#> [5] "par.val 0.5"   "par.val 0.525" "par.val 0.55"  "par.val 0.575"
#> [9] "par.val 0.6"  
#> 
#> [[2]]
#>  [1] "Quantile diff 1"  "Quantile diff 2"  "Quantile diff 3"  "Quantile diff 4" 
#>  [5] "Quantile diff 5"  "Quantile diff 6"  "Quantile diff 7"  "Quantile diff 8" 
#>  [9] "Quantile diff 9"  "Quantile diff 10" "Quantile diff 11" "Quantile diff 12"
#> [13] "Quantile diff 13" "Quantile diff 14" "Quantile diff 15" "Quantile diff 16"
#> [17] "Quantile diff 17" "Quantile diff 18" "Quantile diff 19" "Quantile diff 20"
#> [21] "Quantile diff 21" "Quantile diff 22" "Quantile diff 23" "Quantile diff 24"
#> [25] "Quantile diff 25" "Quantile diff 26" "Quantile diff 27" "Quantile diff 28"
#> [29] "Quantile diff 29" "Quantile diff 30" "Quantile diff 31" "Quantile diff 32"
#> [33] "Quantile diff 33" "Quantile diff 34" "Quantile diff 35" "Quantile diff 36"

To assess sensitivity of SongEvo to a range of parameter values, plot the range in trait quantiles per year by the parameter value. We see that territory turnover values of 0.4–0.6 provided means and quantile ranges of trill bandwidths that are similar to those obtained with the published estimate of 0.5, indicating that the Acquire a Territory submodel is robust to realistic variation in those parameter values.

In the figure, solid gray and black lines show the quantile range of song frequency per year over all iterations as parameterized with the published territory turnover rate (0.5; thick black line) and a range of values from 0.4 to 0.6 (in steps of 0.05, light to dark gray). Orange lines show the mean and 2.5th and 97.5th quantiles of all quantile ranges.

 #plot of range in trait quantiles by year by parameter value
plot(1:years, par.sens1$sens.results.diff[1,], ylim=c(min(par.sens1$sens.results.diff, 
    na.rm=TRUE), max(par.sens1$sens.results.diff, na.rm=TRUE)), type="l", 
    ylab="Quantile range (Hz)", xlab="Year", col="transparent", xaxt="n")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))

  #Make a continuous color ramp from gray to black
grbkPal <- colorRampPalette(c('gray','black'))
  
  #Plot a line for each parameter value
for(i in 1:length(par.range)){
lines(1:years, par.sens1$sens.results.diff[i,], type="l", 
    col=grbkPal(length(par.range))[i])
}

  #Plot values from published parameter values
lines(1:years, par.sens1$sens.results.diff[2,], type="l", col="black", lwd=4)

  #Calculate and plot mean and quantiles
quant.mean <- apply(par.sens1$sens.results.diff, 2, mean, na.rm=TRUE)
lines(quant.mean, col="orange")

#Plot 95% quantiles (which are similar to credible intervals)
  #95% quantiles of population means (narrower)
quant.means <- apply (par.sens1$sens.results.diff, MARGIN=2, quantile, 
    probs=c(0.975, 0.025), R=600, na.rm=TRUE)
lines(quant.means[1,], col="orange", lty=2)
lines(quant.means[2,], col="orange", lty=2)

Optimize parameter values with par.opt()

This function follows par.sens to help users optimize values for imperfectly known parameters for SongEvo. The goals are to maximize accuracy and precision of model prediction. Accuracy is quantified by three different approaches: i) the mean of absolute residuals of the predicted population mean values in relation to target data (e.g. observed or hypothetical values (smaller absolute residuals indicate a more accurate model)), ii) the difference between the bootstrapped mean of predicted population means and the mean of the target data, and iii) the proportion of simulated population trait means that fall within (i.e. are “contained by”) the confidence intervals of the target data (a higher proportion indicates greater accuracy). Precision is measured with the residuals of the predicted population variance to the variance of target data (smaller residuals indicate a more precise model).

Prepare current song values

target.data <- subset(song.data, Population=="PRBO" & Year==2005)$Trill.FBW

Specify and call par.opt()

Users specify the timestep (“ts”) at which to compare simulated trait values to target trait data (“target.data”) and save the results in an object (called par.opt1 here).

ts <- years
par.opt1 <- par.opt(sens.results=par.sens1$sens.results, ts=ts, 
    target.data=target.data, par.range=par.range)

Examine results objects (residuals and target match).

par.opt1$Residuals
#> , , Residuals of mean
#> 
#>               Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
#> par.val 0.4     453.20696    210.5718    38.30995   387.26257   214.83503
#> par.val 0.425   404.11677    296.2240    24.49342   168.21570   320.40834
#> par.val 0.45    147.45605    290.0803    88.69663   143.36319    80.40223
#> par.val 0.475   364.68102    458.4019   356.53383   353.57721   269.28765
#> par.val 0.5     513.06852    382.7395   272.92341   542.49408   394.60764
#> par.val 0.525   255.44487    319.2044   159.95935    12.18715    76.50453
#> par.val 0.55    125.85641    113.3259   104.58264   513.44847   213.80175
#> par.val 0.575   134.84595    247.1981   260.74852   393.73616   317.21055
#> par.val 0.6      97.81721    220.8136    49.83505   185.85297   378.95534
#>               Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10
#> par.val 0.4     152.53329   81.463192    179.8530   259.98503   214.259042
#> par.val 0.425   135.43414   55.138329    382.3488   178.82267     8.712625
#> par.val 0.45     37.86277  214.719311    246.8748   297.11292   425.027935
#> par.val 0.475   188.10521  200.398304    262.9516   119.03927   292.365726
#> par.val 0.5     278.18802  358.891099    274.5445   274.53009   319.697206
#> par.val 0.525    52.99814  315.575097    284.8793   516.82147   196.123701
#> par.val 0.55    103.31236    4.342637    174.7679   257.66204   106.946743
#> par.val 0.575    58.94127  201.050800    199.3146   165.76322   382.787158
#> par.val 0.6      47.61089  298.283980    241.1544    63.89332   341.796072
#> 
#> , , Residuals of variance
#> 
#>                Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
#> par.val 0.4   16792.884481    1884.864    8722.404   5985.0687   2739.6575
#> par.val 0.425 14192.474880    7081.036    8933.155    423.2947  36098.3753
#> par.val 0.45   1505.416114    3481.659    1948.791    887.0233  13413.6386
#> par.val 0.475  5495.864732    4224.342   10239.350  12163.4202   3807.3220
#> par.val 0.5       2.510399   14386.743   10385.058   8866.7226    659.8065
#> par.val 0.525 19604.466754    2860.051   32899.684  11455.7680  10369.0950
#> par.val 0.55  15602.317878   28189.588    7493.059  20445.8492   8095.5097
#> par.val 0.575 30087.037904    6185.274    4019.957  18330.7369  22080.2050
#> par.val 0.6   13099.781083    1205.803    2403.983    586.8759   8989.4549
#>               Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10
#> par.val 0.4     9946.4036    75.78961   8111.5718  16730.1362     3014.202
#> par.val 0.425  15878.8533 15484.65958   6162.1862   3560.0691     8738.654
#> par.val 0.45    6018.6199  4484.63359   7733.0092   8376.6651    14438.161
#> par.val 0.475   3429.4314  8105.08259   9469.1177   8067.4533     2150.253
#> par.val 0.5     9806.6145  3154.10655    225.8658    719.5565    10433.947
#> par.val 0.525   5476.8707  1148.48587   3154.9403  19197.7098    14558.573
#> par.val 0.55    2664.4439  3724.74759  12757.7776  16349.6057    10105.054
#> par.val 0.575    342.4285  1455.93137   1589.3142   2998.6052     6894.774
#> par.val 0.6     7775.0169 16501.64413  12453.7697   2226.1921     2362.857
par.opt1$Target.match
#>               Difference in means Proportion contained
#> par.val 0.4              219.2280                  0.2
#> par.val 0.425            156.7283                  0.3
#> par.val 0.45             189.5871                  0.2
#> par.val 0.475            286.5342                  0.0
#> par.val 0.5              361.1684                  0.0
#> par.val 0.525            218.9698                  0.3
#> par.val 0.55             151.1422                  0.1
#> par.val 0.575            209.1904                  0.1
#> par.val 0.6              192.6013                  0.3

Plot results of par.opt()

Accuracy of par.opt()

  1. Difference in means.
plot(par.range, par.opt1$Target.match[,1], type="l", xlab="Parameter range", 
    ylab="Difference in means (Hz)")

  1. Plot proportion contained.
plot(par.range, par.opt1$Prop.contained, type="l", xlab="Parameter range", 
    ylab="Proportion contained")

  1. Calculate and plot mean and quantiles of residuals of mean trait values.
res.mean.means <- apply(par.opt1$Residuals[, , 1], MARGIN=1, mean, na.rm=TRUE)
res.mean.quants <- apply (par.opt1$Residuals[, , 1], MARGIN=1, quantile, 
    probs=c(0.975, 0.025), R=600, na.rm=TRUE)
plot(par.range, res.mean.means, col="orange", ylim=c(min(par.opt1$Residuals[,,1], 
    na.rm=TRUE), max(par.opt1$Residuals[,,1], na.rm=TRUE)), type="b", 
    xlab="Parameter value (territory turnover rate)", 
    ylab="Residual of trait mean (trill bandwidth, Hz)")
points(par.range, res.mean.quants[1,], col="orange")
points(par.range, res.mean.quants[2,], col="orange")
lines(par.range, res.mean.quants[1,], col="orange", lty=2)
lines(par.range, res.mean.quants[2,], col="orange", lty=2)

Precision of par.opt()

#Calculate and plot mean and quantiles of residuals of variance of trait values
res.var.mean <- apply(par.opt1$Residuals[, , 2], MARGIN=1, mean, na.rm=TRUE)
res.var.quants <- apply (par.opt1$Residuals[, , 2], MARGIN=1, quantile, 
    probs=c(0.975, 0.025), R=600, na.rm=TRUE)
plot(par.range, res.var.mean, col="purple", 
    ylim=c(min(par.opt1$Residuals[,,2], na.rm=TRUE), 
    max(par.opt1$Residuals[,,2], na.rm=TRUE)), type="b", 
    xlab="Parameter value (territory turnover rate)", 
    ylab="Residual of trait variance (trill bandwidth, Hz)")
points(par.range, res.var.quants[1,], col="purple")
points(par.range, res.var.quants[2,], col="purple")
lines(par.range, res.var.quants[1,], col="purple", lty=2)
lines(par.range, res.var.quants[2,], col="purple", lty=2)

Visual inspection of accuracy and precision of par.opt(): plot trait values for range of parameters

par(mfcol=c(3,2),
    mar=c(2.1, 2.1, 0.1, 0.1),
    cex=0.8)
for(i in 1:length(par.range)){
plot(par.sens1$sens.results[ , , "trait.pop.mean", ], xlab="Year", ylab="Bandwidth (Hz)", 
    xaxt="n", type="n", xlim=c(-0.5, years), 
    ylim=c(min(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE), 
    max(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE)))
    for(p in 1:iteration){
        lines(par.sens1$sens.results[p, , "trait.pop.mean", i], col="light gray")
        }
freq.mean <- apply(par.sens1$sens.results[, , "trait.pop.mean", i], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))

#Plot 95% quantiles
quant.means <- apply (par.sens1$sens.results[, , "trait.pop.mean", i], MARGIN=2, quantile, 
    probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)

#plot mean and CI for historic songs.  
 #plot original song values
library("boot")
sample.mean <- function(d, x) {
    mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)  
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)
 
 #plot current song values
library("boot")
sample.mean <- function(d, x) {
    mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)#, strata=mn.res$iteration) 
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)

  #plot panel title
text(x=3, y=max(par.sens1$sens.results[ , , "trait.pop.mean", ], na.rm=TRUE)-100, 
    labels=paste("Par = ", par.range[i], sep=""))  
}

Model validation with mod.val()

This function allows users to assess the validity of the specified model by testing model performance with a population different from the population used to build the model. The user first runs SongEvo with initial trait values from the validation population. mod.val() uses the summary.results array from SongEvo, along with target values from a specified timestep, to calculate the same three measures of accuracy and one measure of precision that are calculated in par.opt.

We parameterized SongEvo with initial song data from Schooner Bay, CA in 1969, and then compared simulated data to target (i.e. observed) data in 2005.

Prepare initial song data for Schooner Bay.

starting.trait <- subset(song.data, Population=="Schooner" & Year==1969)$Trill.FBW
starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait), 
    mean=mean(starting.trait), sd=sd(starting.trait)))

init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <-  round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <-  round(runif(n.territories, min=37.787768, max=37.805645), digits=8)

Specify and call SongEvo() with validation data

iteration <- 10
years <- 36
timestep <- 1
terr.turnover <- 0.5

SongEvo2 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,  
    timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover, 
    integrate.dist = integrate.dist, 
    learning.error.d = learning.error.d, learning.error.sd = learning.error.sd, 
    mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
    mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan, 
    phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max, 
    male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
    disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd, 
    mate.comp = mate.comp, prin = prin, all = TRUE)

Specify and call mod.val()

ts <- 36
target.data <- subset(song.data, Population=="Schooner" & Year==2005)$Trill.FBW
mod.val1 <- mod.val(summary.results=SongEvo2$summary.results, ts=ts, 
    target.data=target.data)

Plot results from mod.val()

plot(SongEvo2$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)", 
    xaxt="n", type="n", xlim=c(-0.5, 36.5), 
    ylim=c(min(SongEvo2$summary.results[, , "trait.pop.mean"], na.rm=TRUE), 
    max(SongEvo2$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
    for(p in 1:iteration){
        lines(SongEvo2$summary.results[p, , "trait.pop.mean"], col="light gray")
        }
freq.mean <- apply(SongEvo2$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))

#Plot 95% quantiles 
quant.means <- apply (SongEvo2$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile, 
    probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)

#plot mean and CI for historic songs.  
 #plot original song values
library("boot")
sample.mean <- function(d, x) {
    mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)

 #text and arrows
text(x=5, y=2720, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)

 #plot current song values
library("boot")
sample.mean <- function(d, x) {
    mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)

 #text and arrows
text(x=25, y=3100, labels="Current songs", pos=3)
arrows(x0=25, y0=3300, x1=36, y1=mean(target.data), length=0.1)

The model did reasonably well predicting trait evolution in the validation population, suggesting that it is valid for our purposes: the mean bandwidth was abs(mean(target.data)-freq.mean)Hz from the observed values, ~21% of predicted population means fell within the 95% confidence intervals of the observed data, and residuals of means (~545 Hz) and variances (~415181 Hz) were similar to those produced by the training data set.

Hypothesis testing with h.test()

This function allows hypothesis testing with SongEvo. To test if measured songs from two time points evolved through mechanisms described in the model (e.g. drift or selection), users initialize the model with historical data, parameterize the model based on their understanding of the mechanisms, and test if subsequently observed or predicted data match the simulated data. The output data list includes two measures of accuracy: the proportion of observed points that fall within the confidence intervals of the simulated data and the residuals between simulated and observed population trait means. Precision is measured as the residuals between simulated and observed population trait variances. We tested the hypothesis that songs of Z. l. nuttalli in Bear Valley, CA evolved through cultural drift from 1969 to 2005.

Prepare initial song data for Bear Valley.

starting.trait <- subset(song.data, Population=="Bear Valley" & Year==1969)$Trill.FBW
starting.trait2 <- c(starting.trait, rnorm(n.territories-length(starting.trait), 
    mean=mean(starting.trait), sd=sd(starting.trait)))

init.inds <- data.frame(id = seq(1:n.territories), age = 2, trait = starting.trait2)
init.inds$x1 <-  round(runif(n.territories, min=-122.481858, max=-122.447270), digits=8)
init.inds$y1 <-  round(runif(n.territories, min=37.787768, max=37.805645), digits=8)

Specify and call SongEvo() with test data

SongEvo3 <- SongEvo(init.inds = init.inds, females = 1.0, iteration = iteration, steps = years,  
    timestep = timestep, n.territories = n.territories, terr.turnover = terr.turnover, 
    integrate.dist = integrate.dist, 
    learning.error.d = learning.error.d, learning.error.sd = learning.error.sd, 
    mortality.a.m = mortality.a.m, mortality.a.f = mortality.a.f,
    mortality.j.m = mortality.j.m, mortality.j.f = mortality.j.f, lifespan = lifespan, 
    phys.lim.min = phys.lim.min, phys.lim.max = phys.lim.max, 
    male.fledge.n.mean = male.fledge.n.mean, male.fledge.n.sd = male.fledge.n.sd, male.fledge.n = male.fledge.n,
    disp.age = disp.age, disp.distance.mean = disp.distance.mean, disp.distance.sd = disp.distance.sd, 
    mate.comp = mate.comp, prin = prin, all = TRUE)

Specify and call h.test()

target.data <- subset(song.data, Population=="Bear Valley" & Year==2005)$Trill.FBW
h.test1 <- h.test(summary.results=SongEvo3$summary.results, ts=ts, 
    target.data=target.data)

The output data list includes two measures of accuracy: the proportion of observed points that fall within the confidence intervals of the simulated data and the residuals between simulated and observed population trait means. Precision is measured as the residuals between simulated and observed population trait variances.

Eighty percent of the observed data fell within the central 95% of the simulated values, providing support for the hypothesis that cultural drift as described in this model is sufficient to describe the evolution of trill frequency bandwidth in this population.

h.test1
#> $Residuals
#>              Residuals of mean Residuals of variance
#> Iteration 1           565.7413              36213.01
#> Iteration 2           628.1452              25130.94
#> Iteration 3           327.2808              66605.72
#> Iteration 4           487.8161              53752.93
#> Iteration 5           206.3127              61757.68
#> Iteration 6           556.2683              62287.18
#> Iteration 7           600.0208              70528.58
#> Iteration 8           512.9494              52141.48
#> Iteration 9           403.4288              18740.65
#> Iteration 10          276.5118              51540.67
#> 
#> $Prop.contained
#> [1] 0.4

We can plot simulated data in relation to measured data.

#Plot
plot(SongEvo3$summary.results[1, , "trait.pop.mean"], xlab="Year", ylab="Bandwidth (Hz)", 
    xaxt="n", type="n", xlim=c(-0.5, 35.5), 
    ylim=c(min(SongEvo3$summary.results[, , "trait.pop.mean"], na.rm=TRUE), 
    max(SongEvo3$summary.results[, , "trait.pop.mean"], na.rm=TRUE)))
    for(p in 1:iteration){
        lines(SongEvo3$summary.results[p, , "trait.pop.mean"], col="light gray")
        }
freq.mean <- apply(SongEvo3$summary.results[, , "trait.pop.mean"], 2, mean, na.rm=TRUE)
lines(freq.mean, col="blue")
axis(side=1, at=seq(0, 35, by=5), labels=seq(1970, 2005, by=5))#, tcl=-0.25, mgp=c(2,0.5,0))

#Plot 95% quantiles (which are similar to credible intervals)
quant.means <- apply (SongEvo3$summary.results[, , "trait.pop.mean"], MARGIN=2, quantile, 
    probs=c(0.95, 0.05), R=600, na.rm=TRUE)
lines(quant.means[1,], col="blue", lty=2)
lines(quant.means[2,], col="blue", lty=2)

 #plot original song values
library("boot")
sample.mean <- function(d, x) {
    mean(d[x])
}
boot_hist <- boot(starting.trait, statistic=sample.mean, R=100)#, strata=mn.res$iteration)  
ci.hist <- boot.ci(boot_hist, conf=0.95, type="basic")
low <- ci.hist$basic[4]
high <- ci.hist$basic[5]
points(0, mean(starting.trait), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=0, y=mean(starting.trait), high, low, add=TRUE)

 #plot current song values
points(rep(ts, length(target.data)), target.data)

library("boot")
sample.mean <- function(d, x) {
    mean(d[x])
}
boot_curr <- boot(target.data, statistic=sample.mean, R=100)#, strata=mn.res$iteration) 
ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic")
low <- ci.curr$basic[4]
high <- ci.curr$basic[5]
points(years, mean(target.data), pch=20, cex=0.6, col="black")
library("Hmisc")
errbar(x=years, y=mean(target.data), high, low, add=TRUE)

 #text and arrows
text(x=11, y=2850, labels="Historical songs", pos=1)
arrows(x0=5, y0=2750, x1=0.4, y1=mean(starting.trait), length=0.1)
text(x=25, y=2900, labels="Current songs", pos=1)
arrows(x0=25, y0=2920, x1=years, y1=mean(target.data), length=0.1)